龍是十二生肖中唯一虛構(gòu)的動物,中國人對它卻是又敬又怕、有一種特殊的感情,龍的地位之高任何動物也無法與之比較,中國人心中,它是一種能呼風喚雨,騰云駕霧的神物.帝王自稱自己是真龍?zhí)熳印傩兆苑Q自己是龍的傳人.2012年是中國的農(nóng)歷龍年,為了慶祝龍年的到來,某單位的聯(lián)歡會上設計了一個摸獎游戲,在一個口袋中裝有5個紅球和5個白球,這些球除了顏色外完全相同.一次從中摸出2個球,并且規(guī)定:摸到2個白球中三等獎,能夠得到獎金200元;摸到1個紅球,1個白球中二等獎,能夠得到獎金600元;摸到2個紅球,中一等獎,能夠得到獎金1000元.
(Ⅰ)求某人參與摸獎一次,至少得到600元獎金的概率.
(Ⅱ)假設某人參與摸獎一次,所得的獎金為ξ元,求ξ的分布列及數(shù)學期望.
【答案】
分析:(I)某人參與摸獎一次,至少得到600元獎金,則表示此人摸到1個白球,一個紅球且得到600元獎金,或摸到兩個紅球且得到1000元獎金為事件C,記出事件,得到試驗發(fā)生包含的所有事件,和符合條件的事件,由等可能事件的概率公式得到,最后求和事件的概率即可.
(II)由題意知變量ξ的可能取值,對應于變量的不同值理解對應的事件,根據(jù)等可能事件的概率,做出分布列,寫出期望即得.
解答:解:記“摸到兩個白球且得到200元獎金為事件A”,“摸到1個白球,一個紅球且得到600元獎金為事件B”,“摸到兩個紅球且得到1000元獎金為事件C”,由題意可以知道:
….(2分)
….…(4分)
….…(5分)
(Ⅰ)某人參與摸獎一次,至少得到600元獎金的概率為:
….…(8分)
(Ⅱ)假設某人參與摸獎一次,所得的獎金為ξ元,則ξ的分布列如下
…(10分)
ξ的數(shù)學期望為:
(元).….…(12分)
點評:本題考查離散型隨機變量的分布列和期望,求離散型隨機變量的分布列和期望是近年來理科高考必出的一個問題,題目做起來不難,運算量也不大,只要注意解題格式就問題不大.