12.函數(shù)y=sin(x+φ)的圖象關(guān)于y軸對(duì)稱,則φ的一個(gè)取值可以是(  )
A.$\frac{π}{2}$B.-$\frac{π}{4}$C.πD.

分析 由條件利用誘導(dǎo)公式、正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性可得φ=kπ+$\frac{π}{2}$,k∈Z,從而得出結(jié)論.

解答 解:∵函數(shù)y=sin(x+φ)的圖象關(guān)于y軸對(duì)稱,則φ=kπ+$\frac{π}{2}$,k∈Z,
故選:A.

點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、正弦函數(shù)、余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知凸四邊形ABCD的邊長為AB=a,BC=b,CD=c,DA=d,且四邊形既存在外接圓,又存在內(nèi)切圓,則四邊形ABCD的面積為$\sqrt{abcd}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=x,g(x)=-$\frac{4}{x}$,p(x)=f(x)-g(x),求y=p(x)的函數(shù)表達(dá)式.并寫出y=p(x)的單凋遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)[x]表示不超過x的最大整數(shù),則[lg2]|+[lg3]+…+[lg2013]+[lg$\frac{1}{2}$]+[lg$\frac{1}{3}$]+…+[lg$\frac{1}{2013}$]=( 。
A.-2012B.-2008C.-2009D.-2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.給出以下命題:
①f(x)=tanx的圖象關(guān)于點(diǎn)(kπ+$\frac{π}{2}$,0)(k∈Z)對(duì)稱;
②f(x)=-cos(kπ+x)(k∈Z)是偶函數(shù);
③f(x)=cos|x|的最小正周期為π的周期函數(shù);
④y=3|sinx|+4|cosx|的最大值為5;
⑤y=sin2x-cosx的最小值為-1.
其中所有真命題序號(hào)是①②④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,已知直線l:2$\sqrt{2}x-y+3+8\sqrt{2}$=0和圓C1:x2+y2+8x+F=0.若直線l被圓C1截得的弦長為2$\sqrt{3}$.
(1)求圓C1的方程;
(2)設(shè)圓C1和x軸相交于A,B兩點(diǎn),點(diǎn)P為圓C1上不同于A,B的任意一點(diǎn),直線PA,PB交y軸于M,N兩點(diǎn).當(dāng)點(diǎn)P變化時(shí),以MN為直徑的圓C2是否經(jīng)過圓C1內(nèi)一定點(diǎn)?請(qǐng)證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)函數(shù)f(x)=4x3+x-8,用二分法求方程4x3+x-8=0在x∈(1,3)內(nèi)近似解的過程中,通過計(jì)算得:f(2)>0,f(1.5)>0,則方程的解落在區(qū)間( 。
A.(1,1.5)B.(1.5,2)C.(2,2.5)D.(2.5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)全集U是實(shí)數(shù)集R,M={x|x<1},N={x|0<x<2}都是U的子集,則圖中陰影部分所表示的集合是( 。
A.{x|1≤x<2}B.{x|0<x<1}C.{x|x≤0}D.{x|x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.給出下列命題:
(1)函數(shù)$f(x)=\root{3}{{{x^4}-{x^3}}}$和$g(x)=x•\root{3}{x-1}$是同一個(gè)函數(shù);
(2)若函數(shù)$f(x)={log_{\frac{1}{2}}}({x^2}-4x+3)$,則函數(shù)f(x)的單調(diào)遞減區(qū)間是[2,+∞);
(3)對(duì)于函數(shù)f(x),x∈R,“y=|f(x)|的圖象關(guān)于y軸對(duì)稱”“是y=f(x)是奇函數(shù)”的必要不充分條件;
(4)已知函數(shù)f(x)=a|log2x|+1(a≠0),定義函數(shù)$F(x)=\left\{{\begin{array}{l}{f(x),x>0}\\{f(-x),x<0}\end{array}}\right.$,則函數(shù)F(x)是偶函數(shù)且當(dāng)a>0時(shí),函數(shù)y=F(x)-2有四個(gè)零點(diǎn).
其中正確命題的個(gè)數(shù)有( 。﹤(gè).
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案