已知過拋物線的焦點的直線交拋物線于,兩點.求證:
(1)為定值;
(2) 為定值.

(1);(2).

解析試題分析:(1)設(shè)過焦點的直線方程與聯(lián)立,利用韋達(dá)定理,即可得出結(jié)論;
(2)利用,及根與系數(shù)的關(guān)系即可得出.
(1)拋物線的焦點為,設(shè)直線的方程為
消去,得.
由根與系數(shù)的關(guān)系,得(定值).
當(dāng)軸時,,,也成立.
(2)由拋物線的定義,知.
(定值).
當(dāng)軸時,,上式仍成立.
考點:拋物線的簡單性質(zhì).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)分別是橢圓的左,右焦點.
(1)若是橢圓在第一象限上一點,且,求點坐標(biāo);
(2)設(shè)過定點的直線與橢圓交于不同兩點,且為銳角(其中為原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的焦點在軸上, 分別是橢圓的左、右焦點,點是橢圓在第一象限內(nèi)的點,直線軸于點
(1)當(dāng)時,
(1)若橢圓的離心率為,求橢圓的方程;
(2)當(dāng)點P在直線上時,求直線的夾角;
(2) 當(dāng)時,若總有,猜想:當(dāng)變化時,點是否在某定直線上,若是寫出該直線方程(不必求解過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)圓C與兩圓(x+)2+y2=4,(x-)2+y2=4中的一個內(nèi)切,另一個外切.
(1)求C的圓心軌跡L的方程;
(2)已知點M(),F(xiàn)(,0),且P為L上動點,求||MP|-|FP||的最大值及此時點P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定橢圓,稱圓心在坐標(biāo)原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標(biāo);
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知點A,橢圓E:的離心率為;F是橢圓E的右焦點,直線AF的斜率為,O為坐標(biāo)原點
(I)求E的方程;
(II)設(shè)過點A的動直線與E 相交于P,Q兩點。當(dāng)的面積最大時,求的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓經(jīng)過點,離心率為,左右焦點分別為.

(1)求橢圓的方程;
(2)若直線與橢圓交于兩點,與以為直徑的圓交于兩點,且滿足,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,設(shè)橢圓動直線與橢圓只有一個公共點,且點在第一象限.
(1)已知直線的斜率為,用表示點的坐標(biāo);
(2)若過原點的直線垂直,證明:點到直線的距離的最大值為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)(2011•天津)設(shè)橢圓+=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2.點P(a,b)滿足|PF2|=|F1F2|.
(Ⅰ)求橢圓的離心率e;
(Ⅱ)設(shè)直線PF2與橢圓相交于A,B兩點,若直線PF2與圓(x+1)2+=16相交于M,N兩點,且|MN|=|AB|,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案