【題目】已知函數(shù),.
(1)記,試判斷在區(qū)間內(nèi)零點(diǎn)個(gè)數(shù)并說(shuō)明理由;
(2)記(1)中的在內(nèi)的零點(diǎn)為,,若在有兩個(gè)不等實(shí)根,判斷與的大小,并給出對(duì)應(yīng)的證明.
【答案】(1)一個(gè)零點(diǎn),理由見(jiàn)解析;(2),證明見(jiàn)解析
【解析】
(1)利用導(dǎo)數(shù)得到在區(qū)間上是增函數(shù),,,并且在上連續(xù)的,由零點(diǎn)定理即得解;(2)先求出當(dāng)時(shí),是單調(diào)遞增函數(shù);當(dāng)時(shí),是單調(diào)遞減函數(shù),轉(zhuǎn)化成證明,即轉(zhuǎn)化成證明.
(1)由題意:,
那么,定義域?yàn)?/span>,,
由題設(shè),故,即在區(qū)間上是增函數(shù).
那么,,并且在上連續(xù)的,
故根據(jù)零點(diǎn)存在定理,有在區(qū)間有且僅有唯一實(shí)根,即一個(gè)零點(diǎn).
(2),
當(dāng)時(shí),恒大于,
所以當(dāng)時(shí),是單調(diào)遞增函數(shù);
當(dāng)時(shí),恒小于,是單調(diào)遞減函數(shù).在有兩個(gè)不等實(shí)根,
則,,顯然:當(dāng)時(shí),.
要證明,即可證明,
而在時(shí)是單調(diào)遞減函數(shù).故證.
又由,即可證:.即,(構(gòu)造思想),
即,
令,由(1)可知:,
那么:,
記,則,
當(dāng)時(shí),;當(dāng)時(shí),;故;
而;故,而,從而有:;
因此:,即單增,從而時(shí),,
即成立.故得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若方程所表示的曲線為C,給出下列四個(gè)命題:
①若C為橢圓,則1<t<4且t≠;
②若C為雙曲線,則t>4或t<1;
③曲線C不可能是圓;
④若C表示橢圓,且長(zhǎng)軸在x軸上,則1<t<.
其中正確的命題是________(把所有正確命題的序號(hào)都填在橫線上).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,曲線:(,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;
(2)若直線的方程為,設(shè)與的交點(diǎn)為,,與的交點(diǎn)為,,若的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);
(2)已知直線:與圓:交于,兩點(diǎn),記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái),隨著互聯(lián)網(wǎng)技術(shù)的快速發(fā)展,共享經(jīng)濟(jì)覆蓋的范圍迅速擴(kuò)張,繼共享單車、共享汽車之后,共享房屋以“民宿”、“農(nóng)家樂(lè)”等形式開(kāi)始在很多平臺(tái)上線.某創(chuàng)業(yè)者計(jì)劃在某景區(qū)附近租賃一套農(nóng)房發(fā)展成特色“農(nóng)家樂(lè)”,為了確定未來(lái)發(fā)展方向,此創(chuàng)業(yè)者對(duì)該景區(qū)附近六家“農(nóng)家樂(lè)”跟蹤調(diào)查了天.得到的統(tǒng)計(jì)數(shù)據(jù)如下表,為收費(fèi)標(biāo)準(zhǔn)(單位:元/日),為入住天數(shù)(單位:),以頻率作為各自的“入住率”,收費(fèi)標(biāo)準(zhǔn)與“入住率”的散點(diǎn)圖如圖
x | 50 | 100 | 150 | 200 | 300 | 400 |
t | 90 | 65 | 45 | 30 | 20 | 20 |
(1)若從以上六家“農(nóng)家樂(lè)”中隨機(jī)抽取兩家深入調(diào)查,記為“入住率”超過(guò)的農(nóng)家樂(lè)的個(gè)數(shù),求的概率分布列;
(2)令,由散點(diǎn)圖判斷與哪個(gè)更合適于此模型(給出判斷即可,不必說(shuō)明理由)?并根據(jù)你的判斷結(jié)果求回歸方程.(結(jié)果保留一位小數(shù))
(3)若一年按天計(jì)算,試估計(jì)收費(fèi)標(biāo)準(zhǔn)為多少時(shí),年銷售額
參考數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分13分)某縣一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4噸、硝酸鹽18噸;生產(chǎn)1車皮乙種肥料需要的主要原料是磷酸鹽1噸、硝酸鹽15噸.先庫(kù)存磷酸鹽10噸、硝酸鹽66噸,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料.若生產(chǎn)1車皮甲種肥料產(chǎn)生的利潤(rùn)為10000元;生產(chǎn)1車皮乙種肥料產(chǎn)生的利潤(rùn)為5000元.那么分別生產(chǎn)甲、乙兩種肥料各多少車皮能產(chǎn)生最大的利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓離心率為,且與雙曲線有相同焦點(diǎn).
(1)求橢圓標(biāo)準(zhǔn)方程;
(2)過(guò)點(diǎn)的直線與橢圓交于、兩點(diǎn),原點(diǎn)在以為直徑的圓上,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第16屆亞運(yùn)會(huì)在中國(guó)廣州進(jìn)行,為了搞好接待工作,組委會(huì)招幕了名男志愿者和名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有人和人喜愛(ài)運(yùn)動(dòng),其余人不喜愛(ài)運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:
喜愛(ài)運(yùn)動(dòng) | 不喜愛(ài)運(yùn)動(dòng) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為性別與喜愛(ài)運(yùn)動(dòng)有關(guān)?
附:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的不等式的解集中的整數(shù)解恰好有三個(gè),則實(shí)數(shù)a的取值范圍是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com