已知k<1,求不等式
k(x-1)x-2
>1
的解集.
分析:分兩種情況考慮:當(dāng)x-2大于0時(shí),在不等式兩邊都乘以x-2,不等號(hào)方向不變?nèi)サ舴帜负,由k小于0得到k-1小于0,即可求出原不等式的解集;當(dāng)x-2小于0時(shí),在不等式兩邊都乘以x-2,不等號(hào)方向改變?nèi)サ舴帜负螅碛蒶-1小于0,即可求出原不等式的解集,綜上,得到原不等式的解集.
解答:解:當(dāng)x-2>0即x>2時(shí),原不等式去分母得:kx-k>x-2,
即(k-1)x>k-2,又k<1,即k-1<0,
解得:x<
k-2
k-1
=1+
1
k-1
<1,則原不等式無解;
當(dāng)x-2<0即x<2時(shí),原不等式去分母得:kx-k<x-2,
即(k-1)x<k-2,又k<1,即k-1<0,
解得:x>
k-2
k-1
,原不等式的解集為:
k-2
k-1
<x<2,
綜上,原不等式的解集為(
k-2
k-1
,2).
點(diǎn)評(píng):此題考查了其他不等式的解法,考查了分類討論的數(shù)學(xué)思想,是一道基礎(chǔ)題;學(xué)生在去分母時(shí)注意考慮x-2的正負(fù)決定不等號(hào)改變與否.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,a2=3,2Sn-(n+1)an=An+B(其中A、B是常數(shù),n∈N*).
(1)求A、B的值;
(2)求證數(shù)列{
an
n
+
1
n
}
是等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式an;
(3)已知k是正整數(shù),不等式8an+1-an2<k對(duì)n∈N*都成立,求k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知k<1,求不等式數(shù)學(xué)公式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知k<1,求不等式
k(x-1)
x-2
>1
的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省眉山市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知k<1,求不等式的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案