A. | (-1,1) | B. | (-∞,-1)∪(1,+∞) | C. | $(-1,-\frac{1}{3})$ | D. | $(-∞,-1)∪(-\frac{1}{3},+∞)$ |
分析 由題意f(x)解析式可知f(x)為偶函數(shù),且定義域?yàn)镽,判斷f(x)在定義域上的單調(diào)性即可;
解答 解:由題意f(x)解析式可知f(x)為偶函數(shù),且定義域?yàn)镽;
當(dāng)x>0,y=ln(x2+1)為(0,+∞)增函數(shù),y=-e-|x| 為(0,+∞)增函數(shù),故f(x)為增函數(shù);
不等式f(2x+1)>f(x)轉(zhuǎn)換為:|2x+1|>|x|
兩邊平方后解得:x≤-1 或 x≥$-\frac{1}{3}$.
故選:D.
點(diǎn)評(píng) 本題主要考查了函數(shù)的奇偶性,以及函數(shù)的單調(diào)性等綜合知識(shí)點(diǎn),屬中等題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [4,+∞) | B. | (0,$\frac{5}{2}$) | C. | [$\frac{5}{2}$,4] | D. | [$\frac{5}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ①② | C. | ②④ | D. | ③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|1<x<3} | B. | {x|1≤x<3} | C. | {x|1<x≤3} | D. | {x|1≤x≤3} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com