已知橢圓的離心率為=,橢圓上的點(diǎn)到兩焦點(diǎn)的距離之和為12,點(diǎn)A、B分別是橢圓長軸的左、右端點(diǎn),點(diǎn)F是橢圓的右焦點(diǎn).點(diǎn)在橢圓上,且位于軸的上方,.
(I) 求橢圓的方程;
(II)求點(diǎn)的坐標(biāo);
(III) 設(shè)是橢圓長軸AB上的一點(diǎn),到直線AP的距離等于,求橢圓上的點(diǎn)到點(diǎn)的距離的最小值.
解:(I) (II)點(diǎn)P的坐標(biāo)是() (III)當(dāng)x=時,d取得最小值.
【解析】本試題主要是考查了橢圓方程的求解以及點(diǎn)的坐標(biāo)的求解和圓錐曲線上點(diǎn)到點(diǎn)的距離的最值問題的求解的綜合運(yùn)用。
(1)因?yàn)闄E圓上的點(diǎn)到兩焦點(diǎn)的距離之和為12,
∴ 并且由離心率 =,∴
結(jié)合a,b,c關(guān)系,∴橢圓的方程為
(2)由(1)可得點(diǎn)A(-6,0),B(6,0),F(xiàn)(0,4)
設(shè)點(diǎn)P(x,y),則=(x+6,y),=(x-4,y),由已知可得聯(lián)立方程組得到關(guān)于x的一元二次方程, 則 2x2+9x-18=0,x=或x=-6.由于y>0,只能x=,于是y=
從而得到點(diǎn)P的坐標(biāo)。
(3)直線AP的方程是x-+6=0
設(shè)點(diǎn)M的坐標(biāo)為(m,0),則M到直線AP的距離是 .
∴= |m-6|,又-6≤m≤6,解得m=2.
∴M點(diǎn)的坐標(biāo)為(2,0)
設(shè)橢圓上的點(diǎn)(x,y)到點(diǎn)M的距離為d,則利用兩點(diǎn)的距離公式可以解得最值
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、
| ||||
C、
| ||||
D、以上均不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
| ||
3 |
OA |
OB |
1 |
2 |
OM |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com