【題目】已知橢圓()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)為橢圓的左焦點(diǎn),直線,為橢圓上任意一點(diǎn),證明:點(diǎn)到的距離是點(diǎn)到距離的倍.
【答案】(1);(2)見(jiàn)解析
【解析】
(1)根據(jù)焦距及短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形,結(jié)合橢圓中的關(guān)系,即可求得的值,即可得橢圓方程.
(2)設(shè)出點(diǎn)的坐標(biāo),根據(jù)兩點(diǎn)間距離公式,結(jié)合橢圓的方程即可證明.
(1)因?yàn)闄E圓()的焦距為4,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形.
所以,解方程組可得
所以橢圓的方程為
(2)證明:設(shè),
因?yàn)?/span>為橢圓的左焦點(diǎn),直線,橢圓的方程為
所以,即
則點(diǎn)P到直線的距離為
點(diǎn)P到的距離為
因?yàn)?/span>
所以原式
所以,即點(diǎn)到的距離是點(diǎn)到距離的倍.
得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)是由曲線確定的.
(1)寫(xiě)出函數(shù),并判斷該函數(shù)的奇偶性;
(2)求函數(shù)的單調(diào)區(qū)間并證明其單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第個(gè)家庭的月收入(單位:千元)與月儲(chǔ)蓄(單位:千元)的數(shù)據(jù)資料,算得,,,.
(1)求家庭的月儲(chǔ)蓄對(duì)月收入的線性回歸方程;
(2)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
(附:線性回歸方程中,,其中,為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大數(shù)據(jù)時(shí)代對(duì)于現(xiàn)代人的數(shù)據(jù)分析能力要求越來(lái)越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過(guò)數(shù)學(xué)方法來(lái)代入某條數(shù)式的表示方式,比如,,2,,n是平面直角坐標(biāo)系上的一系列點(diǎn),用函數(shù)來(lái)擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點(diǎn)列比較接近.其中一種描述接近程度的指標(biāo)是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)的擬合誤差為:.已知平面直角坐標(biāo)系上5個(gè)點(diǎn)的坐標(biāo)數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)來(lái)擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差的最小值,并求出此時(shí)的函數(shù)解析式;
若用二次函數(shù)來(lái)擬合題干表格中的數(shù)據(jù),求;
請(qǐng)比較第問(wèn)中的和第問(wèn)中的,用哪一個(gè)函數(shù)擬合題目中給出的數(shù)據(jù)更好?請(qǐng)至少寫(xiě)出三條理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】是橢圓的兩個(gè)焦點(diǎn),是橢圓上一點(diǎn),當(dāng)時(shí),有.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)橢圓右焦點(diǎn)的動(dòng)直線與橢圓交于兩點(diǎn),試問(wèn):在鈾上是否存在與不重合的定點(diǎn),使得恒成立?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全國(guó)第五個(gè)“扶貧日”到來(lái)之前,某省開(kāi)展“精準(zhǔn)扶貧,攜手同行”的主題活動(dòng),某貧困縣調(diào)查基層干部走訪貧困戶數(shù)量.鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部60人,鎮(zhèn)有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從三鎮(zhèn)共選40名基層干部,統(tǒng)計(jì)他們走訪貧困戶的數(shù)量,并將走訪數(shù)量分成5組,,繪制成如圖所示的頻率分布直方圖.
(1)求這40人中有多少人來(lái)自鎮(zhèn),并估計(jì)三鎮(zhèn)的基層干部平均每人走訪多少貧困戶;(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表)
(2)如果把走訪貧困戶達(dá)到或超過(guò)25戶視為工作出色,以頻率估計(jì)概率,從三鎮(zhèn)的所有基層干部中隨機(jī)選取3人,記這3人中工作出色的人數(shù)為,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓交于、兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)若直線斜率為1,過(guò)橢圓的右焦點(diǎn),求弦的長(zhǎng);
(2)若,且為銳角,求直線斜率的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com