精英家教網 > 高中數學 > 題目詳情
如圖所示的螺旋線是用以下方法畫成的,△ABC是邊長為1的正三角形,曲線CA1,A1A2,A2A3分別是A,B,C為圓心,AC,BA1,CA2為半徑畫的弧,曲線CA1A2A3稱為螺旋線的第一圈;然后又以A為圓心,AA3半徑畫弧,如此繼續(xù)下去,這樣畫到第n圈.設所得螺旋線CA1A2A3…A3n-2A3n-1A3n的總長度為Sn.求
(1)S1=
;
(2)Sn=
n(3n+1)π
n(3n+1)π
分析:(1)當n=1時,即為螺旋線CA1A2A3的長度和,所以S1=
3
+2×
3
+3×
3
=4π
(2)由題知如果這樣畫到第n圈得到n條螺旋線,是由3n條弧長構成,這些弧長的圓心角都為
3
,根據弧長公式得到這些弧長是
3
為首項,
3
為公差,項數為3n的等差數列,所以這些螺旋線的總長度即為等差數列的前3n的和,求出即可.
解答:解:(1)當n=1時,S1=
3
+2×
3
+3×
3
=4π
(2)根據弧長公式知CA1,A1A2,A2A3…A3n-2A3n-1,A3n-1A3n的長度分別為:
3
×π×1
π
,
3
×π× 2
π
,…,
3
×π×3n
π
,
化簡得:
3
,2×
3
,3×
3
,…,3n×
3
,此數列是
3
為首項,
3
為公差,項數為3n的等差數列,則根據等差數列的求和公式得Sn=3n×
3
+
3n(3n-1)
2
×
3
=2nπ+nπ(3n-1)=n(3n+1)π.
故答案為:4π、n(3n+1)π
點評:本題主要考查了等差數列的性質和數列的求和.解題的關鍵是歸納總結得到各弧長成等差數列,此題鍛煉了學生會經過觀察歸納總結得出結論的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示的螺旋線是用以下方法畫成的,△ABC是邊長為1的正三角形,曲線CA1,A1A2,A2A3分別是A,B,C為圓心,AC,BA1,CA2為半徑畫的弧,曲線CA1A2A3稱為螺旋線的第一圈;然后又以A為圓心,AA3半徑畫弧,如此繼續(xù)下去,這樣畫到第圈.設所得螺旋線CA1A2A3…A3n-2A3n-1A3n的總長度為Sn,則Sn=
 

查看答案和解析>>

科目:高中數學 來源:2012-2013學年江蘇海門市高三上學期期中考試模擬數學試卷(1)(解析版) 題型:填空題

如圖所示的螺旋線是用以下方法畫成的,是邊長為1的正三角形,曲線分別是為圓心,為半徑畫的弧,曲線稱為螺旋線的第一圈;然后又以A為圓心,半徑畫弧,如此繼續(xù)下去,這樣畫到第圈。設所得螺旋線的總長度為,則=                

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省株洲市攸縣長鴻學校高三(上)期中數學試卷(文科)(解析版) 題型:填空題

如圖所示的螺旋線是用以下方法畫成的,△ABC是邊長為1的正三角形,曲線CA1,A1A2,A2A3分別是A,B,C為圓心,AC,BA1,CA2為半徑畫的弧,曲線CA1A2A3稱為螺旋線的第一圈;然后又以A為圓心,AA3半徑畫弧,如此繼續(xù)下去,這樣畫到第n圈.設所得螺旋線CA1A2A3…A3n-2A3n-1A3n的總長度為Sn.求
(1)S1=   
(2)Sn=   

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省長沙市雅禮中學高三第二次月考數學試卷(解析版) 題型:填空題

如圖所示的螺旋線是用以下方法畫成的,△ABC是邊長為1的正三角形,曲線CA1,A1A2,A2A3分別是A,B,C為圓心,AC,BA1,CA2為半徑畫的弧,曲線CA1A2A3稱為螺旋線的第一圈;然后又以A為圓心,AA3半徑畫弧,如此繼續(xù)下去,這樣畫到第n圈.設所得螺旋線CA1A2A3…A3n-2A3n-1A3n的總長度為Sn.求
(1)S1=   
(2)Sn=   

查看答案和解析>>

同步練習冊答案