在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=48,則等差數(shù)列{an}的前13項的和為(  )
分析:根據(jù)已知條件化成首項與公差的關(guān)系,然后利用等差數(shù)列的前n項和公式進行求解即可.
解答:解:∵在等差數(shù)列{an}中,3(a3+a5)+2(a7+a10+a13)=48,
∴3(2a1+6d)+2(3a1+27d)=48即a1+6d=4
∴a7=4
所以等差數(shù)列{an}的前13項的和為
(a1+a13)
2
×13
=13a7=13×4=52
故選B.
點評:本題主要考查了等差數(shù)列的前n項和,以及等差數(shù)列的通項,同時考查了運算求解的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1=-2010,其前n項的和為Sn.若
S2010
2010
-
S2008
2008
=2,則S2010=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+3a8+a15=60,則2a9-a10的值為
12
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等差數(shù)列{an}中,d>0,a2008、a2009是方程x2-3x-5=0的兩個根,那么使得前n項和Sn為負值的最大的n的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于=
42
42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若S4=1,S8=4,則a17+a18+a19+a20的值=
9
9

查看答案和解析>>

同步練習(xí)冊答案