(2011•溫州二模)一個(gè)空間幾何體的二視圖(單位:cm)如圖所示,則該兒何體的表面積為
4+2
5
4+2
5
cm2
分析:三視圖復(fù)原的組合體是中部是正方體,上、下部是四棱錐,根據(jù)三視圖數(shù)據(jù),求出表面積即可.
解答:解:三視圖復(fù)原的組合體是中部是棱長為1的正方體,上、下部是底面邊長1的正方形,高為1的正四棱錐,
其中四棱錐的斜高為
12(
1
2
)
2
=
5
2
,
∴組合體的表面積為:4×1×1+8×
1
2
×1×
5
2
=4+2
5

故答案為:4+2
5
點(diǎn)評:本題考查由三視圖求表面積,考查計(jì)算能力,空間想象能力,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)某程序框圖如圖所示,則該程序運(yùn)行后輸出的S的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)下列函數(shù)中,在(0,1)上有零點(diǎn)的函數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)已知定義在R上的函數(shù)y=f(x)為奇函數(shù),且y=f(x+1)為偶函數(shù),f(1)=1,則f(3)+f(4)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)已知F是橢圓
x2
a2
+
y2
b2
=1
(a>0,b>0)的左焦點(diǎn),若橢圓上存在點(diǎn)P,使得直線PF與圓x2+y2=b2相切,當(dāng)直線PF的傾斜角為
3
,則此橢圓的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•溫州二模)函數(shù)f(x)=
1
3
x3-
1
2
ax2+
2
27
x+1
的極值點(diǎn)是x1,x2,函數(shù)g(x)=x-alnx的極值點(diǎn)是x0,若x0+x1+x2<2.
(I )求實(shí)數(shù)a的取值范圍;
(II)若存在實(shí)數(shù)a,使得對?x3,x4∈[1,m],不等式f(x3)≤g(x4)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案