(Ⅰ)證明:;
(Ⅱ)若,證明數(shù)例是等比數(shù)例;
(Ⅲ)求和:….
本小題主要考查等比數(shù)列的定義,通項(xiàng)公式和求和公式等基本知識(shí)及基本的運(yùn)算技能,考查分析問題能力和推理能力.
解法1:(Ⅰ)證:由
∴an+2=anq2(n∈N*).
(Ⅱ)證:∵an=an-2q2,
∴,.
∴.
∴{ cn}是首項(xiàng)為5,以q2為公比的等比數(shù)列.
(Ⅲ)由(Ⅱ)得,,于是
.
當(dāng)q=1時(shí),
,
當(dāng)q≠1時(shí),
.
故
解法2:(Ⅰ)同解法1(Ⅰ).
(Ⅱ)證:,又c1=a1+2a2=5,
∴{ cn} 是首項(xiàng)為5,以q2為公比的等比數(shù)列。
(Ⅲ)由(Ⅱ)的類似方法得,
,
∵,k=1,2,…,n.
∴.
下同解法1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(07年湖北卷文)(13分)
已知數(shù)列和滿足:,,,(),且是以為公比的等比數(shù)列.
(I)證明:;
(II)若,證明數(shù)列是等比數(shù)列;
(III)求和:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
已知數(shù)列、滿足: 為常數(shù)), 且。
(Ⅰ)若是等比數(shù)列, 求數(shù)列和前項(xiàng)和;
(Ⅱ)當(dāng)是等比數(shù)列時(shí), 甲同學(xué)說: 一定是等比數(shù)列; 乙 同學(xué)說: 一定不是等比數(shù)列, 請(qǐng)你對(duì)甲、乙兩人的判斷正確與否作出解釋
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆度寧夏高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(12分)
已知數(shù)列{an}滿足a1=,且前n項(xiàng)和Sn滿足:Sn=n2an,求a2,a3,a4,猜想{an}的通項(xiàng)公式,并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年上海市閘北區(qū)高三第一學(xué)期期末數(shù)學(xué)理卷 題型:解答題
(滿分20分)本題有2小題,第1小題12分,第2小題8分.
已知數(shù)列{}和{}滿足:對(duì)于任何,有,為非零常數(shù)),且.
(1)求數(shù)列{}和{}的通項(xiàng)公式;
(2)若是與的等差中項(xiàng),試求的值,并研究:對(duì)任意的,是否一定能是數(shù)列{}中某兩項(xiàng)(不同于)的等差中項(xiàng),并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年廣東省高二上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題
(本小題滿分14分) 已知數(shù)列和滿足:,,,(),且是以為公比的等比數(shù)列.
(Ⅰ)證明:;
(Ⅱ)若,證明:數(shù)列是等比數(shù)列;
(Ⅲ)(理科做,文科不做)若,求和:.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com