對(duì)甲、乙兩種商品重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:mg):

甲:13 15 14 14 9 14 21 9 10 11

乙:10 14 9 12 15 14 11 19 22 16

(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲、乙兩種商品重量誤差的中位數(shù);

(2)計(jì)算甲種商品重量誤差的樣本方差;

(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取2件,求重量誤差為19的商品被抽中的概率.

解:(1)莖葉圖如圖所示:

甲、乙兩種商品重量誤差的中位數(shù)分別為13.5,14.(4分)

(2)

=13(mg).

∴甲種商品重量誤差的樣本方差為

[(13-13)2+(15-13)2+(14-13)2+(14-13)2+(9-13)2+(14-13)2+(21-13)2+(11-13)2+(10-13)2+(9-13)2]=11.6.(8分)

(3)設(shè)重量誤差為19的乙種商品被抽中的事件為A.

從重量誤差不低于15的乙種商品中隨機(jī)抽取兩件共有(15,16),(15,19),(15,22),(16,19),(16,22),(19,22)6個(gè)基本事件,其中事件A含有(15,19),(16,19),(19,22)3個(gè)基本事件.

P(A)=.(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)甲、乙兩種商品的重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:mg):
甲:13  15  14  14  9  14  21  9   10  11
乙:10  14  9  12  15  14  11  19  22  16
(Ⅰ)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(Ⅱ)計(jì)算甲種商品重量誤差的樣本方差;
(Ⅲ)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取兩件,求重量誤差為19的商品被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆江西省六校高三聯(lián)考數(shù)學(xué)理卷 題型:解答題

(本題滿分12分)
對(duì)甲、乙兩種商品的重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:):
甲:13  15  14  14  9  14  21  9   10  11
乙:10  14  9  12  15  14  11  19  22  16
(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲,乙兩種商品重量誤差的中位數(shù);
(2)計(jì)算甲種商品重量誤差的樣本方差;
(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取兩件,求重量誤差為19的商品被抽
中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2016屆山西朔州應(yīng)縣一中高一上第四次月考數(shù)學(xué)試卷(解析版) 題型:解答題

對(duì)甲、乙兩種商品重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:mg):

甲:13 15 14 14 9 14 21 9 10 11

乙:10 14 9 12 15 14 11 19 22 16

(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲、乙兩種商品重量誤差的中位數(shù);

(2)計(jì)算甲種商品重量誤差的樣本方差;

(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取2件,求重量誤差為19的商品被抽中的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)甲、乙兩種商品重量的誤差進(jìn)行抽查,測(cè)得數(shù)據(jù)如下(單位:mg):

甲:13 15 14 14 9 14 21 9 10 11

乙:10 14 9 12 15 14 11 19 22 16

(1)畫出樣本數(shù)據(jù)的莖葉圖,并指出甲、乙兩種商品重量誤差的中位數(shù);

(2)計(jì)算甲種商品重量誤差的樣本方差;

(3)現(xiàn)從重量誤差不低于15的乙種商品中隨機(jī)抽取2件,求重量誤差為19的商品被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案