已知abc是三個非零向量,且兩兩不共線,順次將它們的終點和始點相連接而成一三角形的充要條件為a+b+c=0.

證明:已知0≠0,b≠0,c≠0,且ab,bc,ca,

(1)必要性:作=a,=b,則由假設=c,

另一方面a+b=+=.

由于是一對相反向量,

∴有+=0,故有a+b+c=0.

(2)充分性:作=a,=b,則=a+b,又由條件a+b+c=0,

+c=0.等式兩邊同加,得++c=+0.

c=,故順次將向量a、bc的終點和始點相連接成一三角形.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若
a
2+
b
2=0,則
a
=
b
=
0
;
②已知
a
、
b
、
c
是三個非零向量,若
a
+
b
=
0
,則|
a
c
|=|
b
c
|,
③在△ABC中,a=5,b=8,c=7,則
BC
CA
=20;
a
b
是共線向量?
a
b
=|
a
||
b
|.
其中真命題的序號是
 
.(請把你認為是真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

3、已知A,B,C是三個集合,那么“A=B”是“A∩C=B∩C”成立的( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列命題:
①若
a
2
+
b
2
=0
,則
a
=
b
=
0
;
②若A(x1,y1),B(x2,y2),則
1
2
AB
=(
x1+x2
2
y1+y2
2
)
;
③已知
a
b
,
c
是三個非零向量,若
a
+
b
=
0
;,則|
a
c
|=|
b
c
|
;
④已知λ1>0,λ2>0,
e1
,
e2
是一組基底,
a
1
e1
2
e2
,則
a
e1
不共線,
a
e2
也不共線;
a
b
共線?
a
b
=|
a
||
b
|

其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
,
b
c
是三個非零向量,則下列命題中,真命題的個數(shù)是( 。
(1)|
a
b
|=|
a
|•|
b
|?
a
b
; 
(2)
a
,
b
反向?
a
b
=-|
a
|•|
b
|
;
(3)
a
b
?|
a
+
b
|=|
a
-
b
|
;
(4)|
a
|=|
b
|?|
a
c
|=|
b
c
|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c是三個連續(xù)的自然數(shù),且成等差數(shù)列,a+1,b+2,c+5成等比數(shù)列,求a,b,c的值.

查看答案和解析>>

同步練習冊答案