設(shè)x,y滿足約束條件,求目標(biāo)函數(shù)z=6x+10y的最大值是
50
解析試題分析: 根據(jù)題意作出不等式組表示的平面區(qū)域,得到三角形的可行域,當(dāng)目標(biāo)函數(shù)平移到由直線x-4y+3=0,3x+5y=25,的交點(diǎn)(1,)時目標(biāo)函數(shù)取得最大值,且為6+10,故答案為50.
考點(diǎn):本題主要考查了線性規(guī)劃的知識點(diǎn),運(yùn)用平移法得到最值。
點(diǎn)評:解決該試題的關(guān)鍵是準(zhǔn)確的作圖,虛實(shí)要分,然后利用目標(biāo)函數(shù)的斜率與區(qū)域內(nèi)直線的斜率的關(guān)系來得到最優(yōu)解。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知函數(shù)f(x)=-x2+ax-b,若a,b都是區(qū)間[0,4]內(nèi)的數(shù),則f(1)>0成立的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)生產(chǎn)A,B兩種產(chǎn)品,生產(chǎn)每噸產(chǎn)品所需的勞動力和煤、電耗如下表:
已知生產(chǎn)每噸A產(chǎn)品的利潤是7萬元,生產(chǎn)每噸B產(chǎn)品的利潤是12萬元,現(xiàn)因條件限制,該企業(yè)僅有勞動力300個,煤360 t,并且供電局只能供電200 kW,試問該企業(yè)生產(chǎn)A,B兩種產(chǎn)品各多少噸,才能獲得最大利潤?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com