5.在△ABC中,角A,B,C的對邊分別為a,b,c,若$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0,則△ABC( 。
A.一定是銳角三角形B.一定是直角三角形
C.一定是鈍角三角形D.是銳角或直角三角形

分析 利用余弦定理表示出cosB,將已知等式變形后代入計算求出cosC的值,即可確定出C的度數(shù).

解答 解:在△ABC中,由$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$<0和余弦定理可得:cos C<0,
所以C為鈍角,
因此△ABC一定是鈍角三角形.
故選:C.

點評 此題考查了余弦定理,以及三角形性質(zhì)的判斷,熟練掌握余弦定理是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知下列曲線的方程,求它的焦點坐標,離心率.
(1)9x2-y2=81
(2)16x2+9y2=144.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)=2|x|-1,記a=f(log0.53),b=f(log25),c=f(0),則a,b,c 的大小關(guān)系為( 。
A.a<b<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在復(fù)平面內(nèi),復(fù)數(shù)$\frac{2-i}{1+i}$(是虛數(shù)單位)的共軛復(fù)數(shù)對應(yīng)的點位于( 。
A.第四象限B.第三象限C.第二象限D.第一象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=2x-$\sqrt{1-x}$的值域為(  )
A.(-∞,2)B.[2,+∞)C.(2,+∞)D.(-∞,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)a=$\frac{1}{2}$,b=log32,c=2${\;}^{\frac{1}{3}}$,則( 。
A.a>b>cB.b>a>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當曲線y=$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個相異的交點時,實數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若函數(shù)f(x)=x2-2ax+3在[2,+∞)上為增函數(shù),則實數(shù)a的取值范圍是( 。
A.[2,+∞)B.(-∞,2]C.[4,+∞)D.(-∞,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},則∁UA等于( 。
A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}

查看答案和解析>>

同步練習(xí)冊答案