分析 將曲線方程化為標(biāo)準(zhǔn)方程,確定幾何量,即可求它的焦點(diǎn)坐標(biāo),離心率.
解答 解:(1)9x2-y2=81可化為$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{81}$=1,
∴a=3,b=9,c=3$\sqrt{10}$,
焦點(diǎn)坐標(biāo)($±3\sqrt{10}$,0),離心率e=$\frac{c}{a}$=$\sqrt{10}$.
(2)16x2+9y2=144可化為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{16}$=1,
∴a=4,b=3,c=$\sqrt{7}$,
焦點(diǎn)坐標(biāo)(0,$±\sqrt{7}$),離心率e=$\frac{c}{a}$=$\frac{\sqrt{7}}{4}$.
點(diǎn)評(píng) 本題考查雙曲線、橢圓的焦點(diǎn)坐標(biāo),離心率,考查學(xué)生的計(jì)算能力,確定幾何量是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | 0 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1” | |
B. | “x≠-1,則x2+5x-6=0”的必要不充分條件 | |
C. | 命題“若x=y,則sinx=siny”的逆否命題為真命題 | |
D. | 若命題p:?x0∈R,x02-x0+1<0,則¬p:?x0∉R,x02-x0+1≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 12 | C. | $2\sqrt{2}$ | D. | $8\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f (x)=$\sqrt{{x}^{2}}$,g(x)=x | B. | f (x)=x,g(x)=$\frac{{x}^{2}}{x}$ | ||
C. | f (x)=$\sqrt{{x}^{2}-4}$,g(x)=$\sqrt{x+2}$$\sqrt{x-2}$ | D. | f (x)=x,g(x)=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一定是銳角三角形 | B. | 一定是直角三角形 | ||
C. | 一定是鈍角三角形 | D. | 是銳角或直角三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com