分析 (1)由已知中函數(shù)f(x)=log3x,結(jié)合對數(shù)的運算性質(zhì),可得f(45)-f(5)的值;
(2)根據(jù)函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時,g(x)=f(x),可得函數(shù) y=g(x)的表達式.
解答 解:(1)∵函數(shù)f(x)=log3x.
∴f(45)-f(5)=log345-log33=log39=2;
(2)若函數(shù)y=g(x)(x∈R)是奇函數(shù),當(dāng)x>0時,g(x)=f(x)=log3x,
∴當(dāng)x<0時,-x>0,
g(x)=-g(-x)=-log3(-x),
又由g(0)=0得:
g(x)=$\left\{\begin{array}{l}-{log}_{3}(-x),x<0\\ 0,x=0\\{log}_{3}x,x>0\end{array}\right.$.
點評 本題考查的知識點是對數(shù)函數(shù)的國像和性質(zhì),函數(shù)的奇偶性,函數(shù)求值,難度中檔.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 一條直線 | B. | 一個平面 | C. | 兩條平行直線 | D. | 兩個平面 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{4}{3}$ | B. | -$\frac{3}{4}$ | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com