分析 (Ⅰ)求出函數(shù)h(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)問題轉(zhuǎn)化為只需h(x)=ax-lnx-1≥0即可,通過討論a的范圍,求出h(x)的最小值,從而確定a的范圍即可.
解答 解:(Ⅰ)a=0時(shí),h(x)=f(x)+g(x)=xlnx-x+1,
∴h'(x)=lnx,
由h'(x)<0,得x∈(0,1),由h'(x)>0,得x∈(1,+∞),
∴h(x)在(0,1)單調(diào)遞減,在(1,+∞)單調(diào)遞增;…(4分)
(Ⅱ)由f(x)≤g(x)+lnx,得(x-1)lnx≤(ax-1)(x-1),
因?yàn)閤≥1,所以:(。┊(dāng)x=1時(shí),a∈R.
(ⅱ)當(dāng)x>1時(shí),可得lnx≤ax-1,令h(x)=ax-lnx-1,
則只需h(x)=ax-lnx-1≥0即可,
因?yàn)閔′(x)=a-$\frac{1}{x}$,且0<$\frac{1}{x}$<1,
①當(dāng)a≤0時(shí),h′(x)<0,得h(x)在(1,+∞)單調(diào)遞減,
且可知h(e)=ae-2<0這與h(x)=ax-lnx-1≥0矛盾,舍去;
②當(dāng)a≥1時(shí),h′(x)>0,得h(x)=ax-lnx-1在(1,+∞)上是增函數(shù),
此時(shí)h(x)=ax-lnx-1>h(1)=a-1≥0.
③當(dāng)0<a<1時(shí),可得 h(x)在(1,$\frac{1}{a}$)單調(diào)遞減,在($\frac{1}{a}$,+∞)單調(diào)遞增,
∴h(x)min=h($\frac{1}{a}$)=lna<0矛盾,
綜上:當(dāng)a≥1時(shí),f(x)≤g(x)+lnx恒成立.…(12分)
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ab>0 | B. | a>0且b>0 | C. | a+b>3 | D. | a≠0或b≠0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 524 | B. | 260 | C. | 256 | D. | 774 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | b<a<c | C. | c<b<a | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}-1}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\frac{{\sqrt{3}-\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com