本小題滿分12分)
古代印度婆羅門教寺廟內(nèi)的僧侶們曾經(jīng)玩過一種被稱為“河內(nèi)寶塔問題”的游戲,其玩法如下:如圖,設有個圓盤依其半徑大小,大的在下,小的在上套在A桿上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何不允許將大盤套在小盤上面,假定有三柱子A,B,C可供使用。

現(xiàn)用表示將n個圓盤全部從A柱上移到C上所至少需要移動的次數(shù),回答下列問題:
(1)寫出,并求出
(2)記,求和;
(其中表示所有的積的和)
(3)證明:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設平面直角坐標中,O為原點,N為動點,|
ON
|=6,
ON
=
5
OM
.過點M作MM1丄y軸于M1,過N作NN1⊥x軸于點N1,
OT
=
M1M
+
N1N
,記點T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(其中點P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分,(Ⅰ)問5分,(Ⅱ)問7分)

如題(19)圖,在四棱錐中,;平面平面,的中點,。求:

(Ⅰ)點到平面的距離;

(Ⅱ)二面角的大小。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

已知,

(1)求的單調(diào)區(qū)間;

(2)若時,恒成立,求實數(shù)的取值范圍;

(3)當時,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習冊答案