已知兩點和求以為直徑的圓的方程,并判斷M(6,9)和Q(5,3)是在圓上、圓外,還是在圓內(nèi)?
科目:高中數(shù)學(xué) 來源:2013屆山東省高三第二次質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知橢圓的中心在原點,焦點,在軸上,經(jīng)過點,,且拋物線的焦點為.
(1) 求橢圓的方程;
(2) 垂直于的直線與橢圓交于,兩點,當(dāng)以為直徑的圓與軸相切時,求直線的方程和圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三上學(xué)期期末試題文科數(shù)學(xué) 題型:解答題
已知橢圓的離心率為,為橢圓的左右焦點,;分別為橢圓的長軸和短軸的端點(如圖) . 若四邊形的面積為.
(Ⅰ)求橢圓的方程.
(Ⅱ)拋物線的焦點與橢圓的右焦點重合,過點任意作一條直線,交拋物線于兩點. 證明:以為直徑的所有圓是否過拋物線上一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省瑞安中學(xué)2011-2012學(xué)年高三上學(xué)期期末試題數(shù)學(xué)文 題型:解答題
已知橢圓的離心率為,為橢圓的左右焦點,;分別為橢圓的長軸和短軸的端點(如圖) . 若四邊形的面積為.
(Ⅰ)求橢圓的方程.
(Ⅱ)拋物線的焦點與橢圓的右焦點重合,過點任意作一條直線,交拋物線于兩點. 證明:以為直徑的所有圓是否過拋物線上一定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com