兩城相距,在兩地之間距地建一核電站給兩城供電.為保證城市安全,核電站距城市距離不得少于.已知供電費(fèi)用(元)與供電距離()的平方和供電量(億度)之積成正比,比例系數(shù),若城供電量為億度/月,城為億度/月.
(Ⅰ)把月供電總費(fèi)用表示成的函數(shù),并求定義域;
(Ⅱ)核電站建在距城多遠(yuǎn),才能使供電費(fèi)用最小,最小費(fèi)用是多少?

(Ⅰ),定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/6/1rhcg4.png" style="vertical-align:middle;" />;(Ⅱ)核電站建在距時(shí),才能使供電費(fèi)用最小,最小費(fèi)用為元.

解析試題分析:(Ⅰ)利用供電費(fèi)用=電價(jià)×電量可建立函數(shù),同時(shí)根據(jù)題設(shè)要求寫出其定義域;(Ⅱ)根據(jù)﹙Ⅰ﹚所得函數(shù)的解析式及定義域,通過(guò)配方,根據(jù)二次函數(shù)的性質(zhì)可求得最值,進(jìn)而確定電站所建的位置.
試題解析:(Ⅰ),即,
,
所以函數(shù)解析式為 ,定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/3e/6/1rhcg4.png" style="vertical-align:middle;" />.
(Ⅱ)由
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/dc/0/1oo1x3.png" style="vertical-align:middle;" />所以上單調(diào)遞增,所以當(dāng)時(shí),.
故當(dāng)核電站建在距時(shí),才能使供電費(fèi)用最小,最小費(fèi)用為元.
考點(diǎn):函數(shù)的實(shí)際應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=loga(3-ax).
(1)當(dāng)x∈[0,2]時(shí),函數(shù)f(x)恒有意義,求實(shí)數(shù)a的取值范圍.
(2)是否存在這樣的實(shí)數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)是奇函數(shù),(其中)
(1)求實(shí)數(shù)m的值;
(2)在時(shí),討論函數(shù)f(x)的增減性;
(3)當(dāng)x時(shí),f(x)的值域是(1,),求n與a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算
(1)
(2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若關(guān)于x的不等式有實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(2)設(shè),若關(guān)于x的方程至少有一個(gè)解,求p的最小值.
(3)證明不等式:    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某家具廠生產(chǎn)一種兒童用組合床柜的固定成本為20000元,每生產(chǎn)一組該組合床柜需要增加投入100元,已知總收益滿足函數(shù):,其中是組合床柜的月產(chǎn)量.
(1)將利潤(rùn)元表示為月產(chǎn)量組的函數(shù);
(2)當(dāng)月產(chǎn)量為何值時(shí),該廠所獲得利潤(rùn)最大?最大利潤(rùn)是多少?(總收益=總成本+利潤(rùn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長(zhǎng)后通過(guò)點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長(zhǎng)為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí),取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(Ⅱ)若對(duì)任意,都有成立,且函數(shù)的圖象經(jīng)過(guò)點(diǎn)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(),使得等式對(duì)定義域中的每一個(gè)都成立,則稱函數(shù)是“()型函數(shù)”.
(Ⅰ)判斷函數(shù)是否為 “()型函數(shù)”,并說(shuō)明理由;
(Ⅱ)若函數(shù)是“()型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì);,
(Ⅲ)已知函數(shù)是“()型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì).當(dāng)時(shí),,若當(dāng)時(shí),都有,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案