寫出數(shù)列{An}的前5.

A1=1, An=An1+(n≥2)

答案:
解析:

解:由A1=1,An=An1+(n≥2),

A1=1,A2=A1+=2,

A3=A2+,

A4=A3+,

A5=A4+


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

23、在矩形紙片內取n(n∈N*)個點,連同矩形的4個頂點共(n+4)個點,這(n+4)個點中無三點同在一直線上,以這些點作三角形的頂點,把矩形紙片剪成若干個三角形紙片,把這些三角形紙片的個數(shù)記為an
(1)求a1,a2
(2)求數(shù)列{an}的遞推公式.
(3)根據(jù)遞推公式寫出數(shù)列{an}的前6項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=3,Sn為其前n項的和,滿足Sn=Sn-1+an-1+2n-1(n≥2),令bn=
1
anan+1

(1)寫出數(shù)列{an}的前四項,并求數(shù)列{an}的通項公式
(2)若f(x)=2x-1,求和:b1f(1)+b2f•(2)+…+bnf(n)
(3)設cn=
n
an
,求證:數(shù)列{cn}的前n項和Qn<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an+n2-4n(n=1,2,3,…).
(Ⅰ)寫出數(shù)列{an}的前三項a1,a2,a3
(Ⅱ)求證:數(shù)列{an-2n+1}為等比數(shù)列;
(Ⅲ)求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是正數(shù)組成的數(shù)列,前n項和為Snan=2
2Sn
-2
;
(Ⅰ)寫出數(shù)列{an}的前三項;
(Ⅱ)求數(shù)列{an}的通項公式,并寫出推證過程;
(Ⅲ)令bn=
4
anan+1
,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對于所有的n∈N+,都有8Sn=(an+2)2
(1)寫出數(shù)列{an}的前3項;
(2)求數(shù)列{an}的通項公式(寫出推證過程);
(3)設bn=
4
anan+1
,Tn是數(shù)列{bn}的前n項和,求使得Tn
m
20
對所有n∈N+都成立的最小正整數(shù)m的值.

查看答案和解析>>

同步練習冊答案