數(shù)列{an}中,a1=3,Sn為其前n項的和,滿足Sn=Sn-1+an-1+2n-1(n≥2),令bn=
1
anan+1

(1)寫出數(shù)列{an}的前四項,并求數(shù)列{an}的通項公式
(2)若f(x)=2x-1,求和:b1f(1)+b2f•(2)+…+bnf(n)
(3)設(shè)cn=
n
an
,求證:數(shù)列{cn}的前n項和Qn<2.
分析:(1)數(shù)列的前四項:a1=3,a2=5,a3=9,a4=17,Sn=Sn-1+an-1+2n-1(n≥2)?an=an-1+2n-1(n≥2),由此能求出an
(2)由bnf(n)=
2n-1
(2n+1)(2n+1+1)
=
1
2
(
1
2n+1
-
1
2n+1+1
)
,入手,能求出b1f(1)+b2f•(2)+…+bnf(n)
的值.
(3)由cn=
n
2n-1
n
2n
,得Qn=
1
2+1
+
1
22+1
+…+
1
2n+1
1
2
+
2
22
+…+
n
2n
,令Tn=
1
2
+
2
22
+
3
23
+…+
n
2n
,則
1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,再由錯位相減法進行求解.
解答:解:(1)數(shù)列的前四項:a1=3,a2=5,a3=9,a4=17(2分)
Sn=Sn-1+an-1+2n-1(n≥2)?an=an-1+2n-1(n≥2)(3分)
當n≥2時,an=(an-an-1)+•+(a2-a1)+a1=2n-1••+2n-2++22+2•+3=2n+1
經(jīng)驗證a1也符合,所以an=2n.+1(5分)
(2)bnf(n)=
2n-1
(2n+1)(2n+1+1)
=
1
2
(
1
2n+1
-
1
2n+1+1
)
,(7分)
∴b1f(1)+b2f(•2)+…+bnf(n)=
1
2
(
1
2+1
-
1
22+1
)+
1
2
(
1
22+1
-
1
23+1
)+
1
2
(
1
23+1
-
1
24+1
)
+…+
1
2
(
1
2n+1
-
1
2n+1+1
)
=
1
2
(
1
2+1
-
1
2n+1+1
)=
1
6
-
1
2n+2+2
(9分)
(3)由cn=
n
2n-1
n
2n

Qn=
1
2+1
+
1
22+1
+…+
1
2n+1
1
2
+
2
22
+…+
n
2n
(11分)
Tn=
1
2
+
2
22
+
3
23
+…+
n
2n

1
2
Tn=
1
22
+
2
23
+
3
24
+…+
n
2n+1
,
相減,得
1
2
Tn=
1
2
+
1
22
+
1
23
+…+
1
2n
-
n
2n+1
=
1
2
×(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

所以Tn=2-
n+2
2n

所以Qn
1
2
+
2
23
+…+
n
2n
=2-
n+2
2n
<2
(14分)
點評:本題考查數(shù)列知識的綜合運用,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,an=
12
an-1+1(n≥2),求通項公式an

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=
1
5
,an+an+1=
6
5n+1
,n∈N*,則
lim
n→∞
(a1+a2+…+an)等于( 。
A、
2
5
B、
2
7
C、
1
4
D、
4
25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=-60,an+1-an=3,(1)求數(shù)列{an}的通項公式an和前n項和Sn(2)問數(shù)列{an}的前幾項和最小?為什么?(3)求|a1|+|a2|+…+|a30|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}中,a1=1,對?n∈N*an+2an+3•2n,an+1≥2an+1,則a2=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•長寧區(qū)一模)如果一個數(shù)列{an}對任意正整數(shù)n滿足an+an+1=h(其中h為常數(shù)),則稱數(shù)列{an}為等和數(shù)列,h是公和,Sn是其前n項和.已知等和數(shù)列{an}中,a1=1,h=-3,則S2008=
-3012
-3012

查看答案和解析>>

同步練習冊答案