【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的極坐標(biāo)方程為,以極點為平面直角坐標(biāo)系的原點,極軸為的正半軸,建立平面直角坐標(biāo)系.
(1)若曲線為參數(shù))與曲線相交于兩點,求;
(2)若是曲線上的動點,且點的直角坐標(biāo)為,求的最大值.
【答案】(1)(2)
【解析】試題分析:(1)利用極坐標(biāo)與平面直角坐標(biāo)系的轉(zhuǎn)化,可得的方程,再進(jìn)一步將的參數(shù)方程轉(zhuǎn)化,將直線參數(shù)方程與圓方程聯(lián)立,利用直線方程參數(shù)的幾何意義,再結(jié)合韋達(dá)定理可得的值; (2)在曲線上,利用圓的參數(shù)方程,將轉(zhuǎn)化成一個三角函數(shù)式,利用三角函數(shù)內(nèi)容可求最大值.
試題解析:(1)化為直角坐標(biāo)方程為,
為參數(shù))可化為為參數(shù)),
代入,得的,化簡得,
設(shè)對應(yīng)的參數(shù)為,則,所以.
(2)在曲線上,設(shè)為參數(shù))
則,
令,則,
那么,
所以.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩個班級某次考試的數(shù)學(xué)成績(單位:分),從甲、乙兩個班級中分別隨機(jī)抽取5名學(xué)生的成績作樣本,如圖是樣本的莖葉圖,規(guī)定:成績不低于120分時為優(yōu)秀成績.
(1)從甲班的樣本中有放回的隨機(jī)抽取2個數(shù)據(jù),求其中只有一個優(yōu)秀成績的概率;
(2)從甲、乙兩個班級的樣本中分別抽取2名學(xué)生的成績,記獲優(yōu)秀成績的總?cè)藬?shù)為X,求X的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前項和為,,(且),數(shù)列滿足:,且(且).
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前項和的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)= ,則滿足f(f(a))=2f(a)的a的取值范圍是( )
A.[ ,1]
B.[0,1]
C.[ ,+∞)
D.[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=|x+1|+|x﹣1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≤log2(a2﹣4a+12)對任意實數(shù)a恒成立,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地建一座橋,兩端的橋墩已建好,這兩墩相距m米,余下的工程只需要建兩端橋墩之間的橋面和橋墩.經(jīng)預(yù)測一個橋墩的工程費用為256萬元,距離為x米的相鄰兩墩之間的橋面工程費用為(2+ )x萬元.假設(shè)橋墩等距離分布,所有橋墩都視為點,且不考慮其他因素,記余下工程的費用為y萬元.假設(shè)需要新建n個橋墩.
(1)寫出n關(guān)于x的函數(shù)關(guān)系式;
(2)寫出y關(guān)于x的函數(shù)關(guān)系式;
(3)當(dāng)m=640米時,需新建多少個橋墩才能使y最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C1的參數(shù)方程為 (θ為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4sinθ.
(1)把C1的參數(shù)方程化為極坐標(biāo)方程;
(2)求C1與C2交點所在直線的極坐標(biāo)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com