設(shè)f(x)滿足,求f(x)的解析式。

 

答案:
解析:

  ①

 顯然x≠0,將x換成,原方程為  ②聯(lián)立①②兩式,消去,

 得。

 


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

11、設(shè)f(x)=ax+b同時滿足條件f(0)=2和對任意x∈R都有f(x+1)=2f(x)-1成立.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)的定義域為[-2,2],且在定義域內(nèi)g(x)=f(x),且函數(shù)h(x)的圖象與g(x)的圖象關(guān)于直線y=x對稱,求h(x);
(3)求函數(shù)y=g(x)+h(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,已知O為坐標原點,點A的坐標為(a,b),點B的坐標為(cosωx,sinωx),其中a2+b2≠0且ω>0.設(shè)f(x)=
OA
OB

(1)若a=
3
,b=1,ω=2,求方程f(x)=1在區(qū)間[0,2π]內(nèi)的解集;
(2)若點A是過點(-1,1)且法向量為
n
=(-1,1)
的直線l上的動點.當x∈R時,設(shè)函數(shù)f(x)的值域為集合M,不等式x2+mx<0的解集為集合P.若P⊆M恒成立,求實數(shù)m的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)f(x)的性質(zhì)取決于變量a、b和ω的值.當x∈R時,試寫出一個條件,使得函數(shù)f(x)滿足“圖象關(guān)于點(
π
3
,0)
對稱,且在x=
π
6
處f(x)取得最小值”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:044

設(shè)f(x)滿足,求f(x)的解析式。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年《金版新學案》高三數(shù)學(理科)一輪復(fù)習:函數(shù) 第1章第6節(jié) (北師大版必修1)(解析版) 題型:解答題

設(shè)f(x)=ax+b同時滿足條件f(0)=2和對任意x∈R都有f(x+1)=2f(x)-1成立.
(1)求f(x)的解析式;
(2)設(shè)函數(shù)g(x)的定義域為[-2,2],且在定義域內(nèi)g(x)=f(x),且函數(shù)h(x)的圖象與g(x)的圖象關(guān)于直線y=x對稱,求h(x);
(3)求函數(shù)y=g(x)+h(x)的值域.

查看答案和解析>>

同步練習冊答案