直線與圓交于E、F兩點,則(O為原點)的面積為

A.                 B.             C.          D.

 

【答案】

C

【解析】

試題分析:如圖所示,計算的面積,需要計算EF的長度,O到直線的距離。,O到直線的距離,所以的面積為,選C。

考點:本題主要考查直線與圓的位置關(guān)系。

點評:研究直線與圓的位置關(guān)系,可根據(jù)條件靈活選用“代數(shù)法”或“幾何法”。圓的半弦長、半徑、弦心距構(gòu)成Rt△,在解“弦問題”中常常用到。數(shù)形結(jié)合,分析得解。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M的方程為:x2+y2-2x-2y-6=0,以坐標原點為圓心的圓N與圓M相內(nèi)切.
(1)求圓N的方程;
(2)圓N與x軸交于E、F兩點,圓內(nèi)的動點D使得|DE|、|DO|、|DF|成等比數(shù)列,求
DE
DF
的取值范圍;
(3)過點M作兩條直線分別與圓N相交于A、B兩點,且直線MA和直線MB的傾斜角互補,試判斷直線MN和AB是否平行?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系xoy中,已知“葫蘆”曲線C由圓弧C1與圓弧C2相接而成,兩相接點M,N均在直線y=-
2
3
上.圓弧C1所在圓的圓心是坐標原點O,半徑為r1=2;圓弧C2過點A(0,-6
2
).
(Ⅰ)求圓弧C2的方程;
(Ⅱ)已知直線l:mx-y-3
2
=0與“葫蘆”曲線C交于E,F(xiàn)兩點.當|EF|=4+4
2
時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•鹽城二模)如圖,在平面直角坐標系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成.兩相接點M,N均在直線x=5上,圓弧C1的圓心是坐標原點O,半徑為r1=13; 圓弧C2過點A(29,0).
(1)求圓弧C2所在圓的方程;
(2)曲線C上是否存在點P,滿足PA=
30
PO?若存在,指出有幾個這樣的點;若不存在,請說明理由;
(3)已知直線l:x-my-14=0與曲線C交于E、F兩點,當EF=33時,求坐標原點O到直線l的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為x2+y2=4,動點P滿足:過點P作直線與圓C相交所得的所有弦中,弦長最小的為2,記所有滿足條件的點P形成的幾何圖形為曲線M.
(1)寫出曲線M所對應(yīng)的方程;(不需要解答過程)
(2)過點S(0,2)的直線l與圓C交于A,B兩點,與曲線M交于E,F(xiàn)兩點,若AB=2EF,求直線l的方程;
(3)設(shè)點T(x0,y0).
①當y0=0時,若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,求實數(shù)x0的取值范圍;
②若過點T存在一對互相垂直的直線同時與圓C有兩個公共點,試探求實數(shù)x0,y0應(yīng)滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省吉林市高三第三次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,設(shè)AB,CD為⊙O的兩直徑,過B作PB垂直于AB,并與CD延長線相交于點P,過P作直線與⊙O分別交于E,F(xiàn)兩點,連結(jié)AE,AF分別與CD交于G、H

(Ⅰ)設(shè)EF中點為,求證:O、、B、P四點共圓

(Ⅱ)求證:OG =OH.

 

查看答案和解析>>

同步練習冊答案