設(shè)A=37+C
2
7
•35+C
4
7
•33+C
6
7
•3,B=C
1
7
•36+C
3
7
•34+C
5
7
•32+1,則A-B的值為
 
考點:組合及組合數(shù)公式
專題:二項式定理
分析:根據(jù)題意,結(jié)合二項式定理,得出A-B的值.
解答: 解:∵A=37+C
2
7
•35+C
4
7
•33+C
6
7
•3,B=C
1
7
•36+C
3
7
•34+C
5
7
•32+1,
∴A-B=37-
C
1
7
•36+
C
2
7
•35-
C
3
7
•34+
C
4
7
•33-
C
5
7
•32+
C
6
7
•3-1
=(3-1)7
=128.
故答案為:128.
點評:本題考查了二項式定理的應用問題,是基礎(chǔ)題目.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lg
1-x
x+1
(-1<x<1).
(1)判斷f(x)的奇偶性;
(2)證明f(x)是區(qū)間(-1,1)上的單調(diào)減函數(shù);
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在如圖所示的邊長為6的正方形ABCD中,點E是DC的中點,且
CF
=
2
3
CB
,那么
EF
AE
等于( 。
A、-18B、20
C、12D、-15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知C1:y=logax,c2:y=logbx,c3:y=logcx的圖象如圖(1)所示.則在圖(2)中函數(shù)y=ax、y=bx、y=cx的圖象依次為圖中的曲線
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(2x-1)=3x-4,則f(3)等于(  )
A、-3B、-4C、1D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)=
(x-a)2,x≤0
x+
1
x
+a,x>0
,若f(0)是f(x)的最小值,則a的取值范圍是( 。
A、[-1,2]
B、[-1,0]
C、[1,2]
D、[0,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(a 
2
3
b 
1
2
)(-3a 
1
2
b 
1
3
)÷(
1
3
a 
1
6
b 
5
6
)a -
8
9
b -
7
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求y=
7
4
+sinx-sin2x,x∈R的最大最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=2an-4(n∈N*).
(1)求a1,a2,a3求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:bn+1=an+2bn,且b1=2,求證數(shù)列{
bn
2n
}
是等差數(shù)列;
(3)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案