二項(xiàng)式(2x-
1
x
6的展開式中的常數(shù)項(xiàng)是( 。
A、20B、-20
C、160D、-160
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專題:二項(xiàng)式定理
分析:先求出二項(xiàng)式展開式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項(xiàng)的值.
解答: 解:二項(xiàng)式(2x-
1
x
6的展開式的通項(xiàng)公式為Tr+1=
C
r
6
•(-1)r•26-r•x6-2r,
令6-2r=0,求得r=3,可得展開式中的常數(shù)項(xiàng)是-8•
C
3
6
=-160,
故選:D.
點(diǎn)評:本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開式的通項(xiàng)公式,求展開式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地西紅柿自2月1日開始分批上市,通過市場調(diào)查,某批西紅柿上市距2月1日的天數(shù)t與其種植成本Q(單位:元/100kg)的相關(guān)數(shù)據(jù)如表:
時(shí)間t50110250
種植成本Q150108150
根據(jù)表中數(shù)據(jù),下列函數(shù)模型中可以描述西紅柿的種植成本Q與t的變化關(guān)系的是( 。
A、Q=at+b(a≠0)
B、Q=at2+bt+c(a≠00
C、Q=a•bt(a≠0)
D、Q=a•logbt(a≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若兩直線3x+2y+m=0和x-4y+n=0的交點(diǎn)坐標(biāo)為(-1,2),則m+n等于( 。
A、8B、10C、-8D、-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合{x|x2+(k+2)x+1=0,x∈R}∩R+=∅,則實(shí)數(shù)k的取值范圍是(  )
A、-4<k<0B、k>-4
C、k>-2D、k≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)袋中裝有大小相同的5個(gè)球,其中黑球2個(gè)和白球3個(gè),現(xiàn)從袋中隨機(jī)取出2個(gè)球,取出的兩個(gè)球均為白球的概率為(  )
A、
3
10
B、
1
10
C、
3
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
log2(1-x)
2x-
1
2
的定義域是( 。
A、(-∞,-1)
B、[-1,1]
C、(-1,1)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是某幾何體的三視圖,則該幾何體的表面積為( 。
A、
7
2
+
2
+
3
5
2
B、
7
2
+
2
+
5
C、4+
2
+
3
5
2
D、
7
2
+
2
+3
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={0,1,2},B={2,3,4},如圖陰影部分所表示的集合為( 。
A、{2}
B、{0,1}
C、{3,4}
D、{0,1,2,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的右準(zhǔn)線l2與一條漸近線l交于點(diǎn)P,F(xiàn)是雙曲線的右焦點(diǎn).
(1)求證:PF⊥l;
(2)若|PF|=3,且雙曲線的離心率e=
5
4
,求該雙曲線方程;
(3)延長FP交雙曲線左準(zhǔn)線l1和左支分別為點(diǎn)M、N,若M為PN的中點(diǎn),求雙曲線的離心率.

查看答案和解析>>

同步練習(xí)冊答案