如圖所示,已知PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點(diǎn),過AAEPCE,求證:AE⊥平面PBC

答案:
解析:

證明:如題圖所示,∵ PA⊥平面ABC

  ∴ PABC

  又∵ AB是⊙O的直徑,∴ BCAC

  而PAAC=A,∴ BC⊥平面PAC

  又∵ AE平面PAC,∴ BCAE,

  ∵ PCAEPCBC=C

  ∴ AE⊥面PBC


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

22、如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(Ⅰ)求證:∠P=∠EDF;
(Ⅱ)求證:CE•EB=EF•EP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PA切圓O于A,割線PBC交圓O于B、C,PD⊥AB于D,PD與AO的延長線相交于點(diǎn)E,連接CE并延長交圓O于點(diǎn)F,連接AF.
(1)求證:B,C,E,D四點(diǎn)共圓;
(2)當(dāng)AB=12,tan∠EAF=
23
時,求圓O的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,,弦CD∥AP,AD、BC相交于E點(diǎn),F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(Ⅰ)求證:∠P=∠EDF;
(Ⅱ)求證:CE•EB=EF•EP.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC與BD交于E點(diǎn),BD=2,BC=CD=
2

(1)取PD的中點(diǎn)F,求證:PB∥平面AFC;
(2)求多面體PABCF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•甘肅三模)選修4-1:幾何證明選講
如圖所示,已知PA與⊙O相切,A為切點(diǎn),過點(diǎn)P的割線交圓于B、C兩點(diǎn),弦CD∥AP,AD、BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2=EF•EC.
(1)求證:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的長.

查看答案和解析>>

同步練習(xí)冊答案