【題目】已知橢圓的右焦點為,過且與軸垂直的弦長為3.
(1)求橢圓的標準方程;
(2)過作直線與橢圓交于兩點,問:在軸上是否存在點,使為定值,若存在,請求出點坐標,若不存在,請說明理由.
【答案】(1) ;(2) .
【解析】試題分析:
(1)由題意計算可得.則橢圓的標準方程為.
(2)假設(shè)存在點滿足條件,設(shè)其坐標為,設(shè), ,分類討論:
當斜率存在時,聯(lián)立直線方程與橢圓方程有: , .則.滿足題意時有: .解得.此時.驗證可得當斜率不存在時也滿足,
則存在滿足條件的點,其坐標為.此時的值為.
試題解析:
(1)由題意知, .
又當時, .
∴.
則.
∴橢圓的標準方程為.
(2)假設(shè)存在點滿足條件,
設(shè)其坐標為,設(shè), ,
當斜率存在時,設(shè)方程為,
聯(lián)立 , 恒成立.
∴, .
∴, .
∴
.
當為定值時, .
∴.
此時.
當斜率不存在時,
, , .
, ,
.
∴存在滿足條件的點,其坐標為.
此時的值為.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中是自然對數(shù)的底數(shù).
(1)證明:當時, ;
(2)設(shè)為整數(shù),函數(shù)有兩個零點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點E在線段AC上,CE=4,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連接AB,BE,如圖②所示,設(shè)點F是AB的中點.
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為AC上一點,求三棱錐B-DEG的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個幾何體的正視圖和側(cè)視圖都是邊長為1的正方形,且體積為,則這個幾何體的俯視圖可能是下列圖形中的________.(填入所有可能的圖形前的編號)
①銳角三角形;②直角三角形;③鈍角三角形;④四邊形;⑤扇形;⑥圓.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(Ⅰ)當時,求函數(shù)在點處的切線方程;
(Ⅱ)若函數(shù)有兩個零點,試求的取值范圍;
(Ⅲ)當時, 恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的單調(diào)區(qū)間;
(2)若關(guān)于的不等式對一切恒成立,求實數(shù)的取值范圍;
(3)求證:對,都有.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本.用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組(1~5號,6~10號,…,196~200號).若第5組抽出的號碼為22,則第8組抽出的號碼應(yīng)是________.若用分層抽樣法,則40歲的以下的年齡段應(yīng)抽取__________人.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當為何值時,軸為曲線的切線;
(2)用表示中的最小值,設(shè)函數(shù),討論零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,并使得它與直角坐標系有相同的長度單位,曲線的極坐標方程為.
(1)求直線的普通方程和曲線的直角坐標方程;
(2)設(shè)曲線與直線交于、兩點,且點的坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com