已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x﹣1)+g(1﹣x)=x2﹣2x﹣1,且g(1)=﹣1.令
(1)求g(x)的表達(dá)式;
(2)若x>0使f(x)≤0成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)﹣(m+1)x,證明:對(duì)x1,x2∈[1,m],恒有|H(x1)﹣H(x2)|<1.
解:(1)設(shè)g(x)=ax2+bx+c,于是
g(x﹣1)+g(1﹣x)=2a(x﹣1)2+2c=2(x﹣1)2﹣2,
所以
又g(1)=﹣1,則
所以
(2)
當(dāng)m>0時(shí),由對(duì)數(shù)函數(shù)性質(zhì),f(x)的值域?yàn)镽;
當(dāng)m=0時(shí),
對(duì)x>0,f(x)>0恒成立;
當(dāng)m<0時(shí),由
列表:



所以若x>0,f(x)>0恒成立,
則實(shí)數(shù)m的取值范圍是(﹣e,0].
x>0使f(x)≤0成立,實(shí)數(shù)m的取值范圍(﹣∞,﹣e]∪(0,+∞).
(3)因?yàn)閷?duì)x∈[1,m],
,
所以H(x)在[1,m]內(nèi)單調(diào)遞減.
于是

,則
,
所以函數(shù)在(1,e]是單調(diào)增函數(shù),
,故命題成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.
(1)求g(x)的表達(dá)式;
(2)設(shè)1<m≤e,H(x)=g(x+
1
2
)+mlnx-(m+1)x+
9
8
,求證:H(x)在[1,m]上為減函數(shù);
(3)在(2)的條件下,證明:對(duì)任意x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x都滿足g(x-1)+g(1-x)=x2-2x-1,且g(1)=-1.令f(x)=g(x+
1
2
)+mlnx+
9
8
(m∈R,x>0)

(1)求g(x)的表達(dá)式;
(2)若?x>0使f(x)≤0成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對(duì)?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=mg(x)-ln(x+1),其中m為非零常數(shù)
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)-2<m<0時(shí),判斷函數(shù)f(x)的單調(diào)性并且說(shuō)明理由;
(3)證明:對(duì)任意的正整數(shù)n,不等式ln(
1
n
+1)>
1
n2
-
1
n3
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)對(duì)任意實(shí)數(shù)x不等式x-1≤g(x)≤x2-x恒成立,且g(-1)=0,令f(x)=g(x)+mlnx+
12
(m∈R)

(I)求g(x)的表達(dá)式;
(Ⅱ)若?x>0使f(x)≤0成立,求實(shí)數(shù)m的取值范圍;
(Ⅲ)設(shè)1<m≤e,H(x)=f(x)-(m+1)x,證明:對(duì)?x1,x2∈[1,m],恒有|H(x1)-H(x2)|<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)g(x)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且滿足g(x+1)=g(x)+2x+1,設(shè)函數(shù)f(x)=m[g(x+1)-1]-lnx,其中m為常數(shù)且m≠0.
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)-2<m<0時(shí),判斷函數(shù)f(x)的單調(diào)性并且說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案