已知直線l1:2x-y+1=0,直線l2過點(1,1)傾斜角為直線l1的傾斜角的兩倍,則直線l2的方程為(  )
A、4x+3y-7=0
B、4x+3y+1=0
C、4x-y-3=0
D、4x-y+5=0
考點:直線的一般式方程,直線的傾斜角
專題:直線與圓
分析:設(shè)直線l1的傾斜角為α,直線l2的傾斜角為2α,由題意可得tanα=2,進而可得tan2α=-
4
3
,可得直線的點斜式方程,化為一般式即可.
解答: 解:設(shè)直線l1的傾斜角為α,則直線l2的傾斜角為2α,
∵直線l1:2x-y+1=0,∴tanα=2,
∴tan2α=
2tanα
1-tan2α
=-
4
3
,即直線直線l2的斜率為-
4
3
,
∴直線l2的方程為y-1=-
4
3
(x-1),
化為一般式可得4x+3y-7=0
故選:A
點評:本題考查直線的傾斜角和一般式方程,涉及二倍角的正切公式,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

不等式
x-1
1-2x
≥0的解集
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=-
15
4
α∈(
2
,2π)
,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x>0,x+
4
x
≥4;命題q:?x0∈R,2x0=-1.則下列判斷正確的是( 。
A、p是假命題
B、q是真命題
C、p∧(¬q)是真命題
D、(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(-1,1),B(2,y),向量
a
=(1,2),若
AB
a
,則實數(shù)y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x-4>0},B={x|-2≤x≤3},則A∩B=( 。
A、R
B、(-1,3]
C、[-2,-1)
D、[-2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
滿足|
a
|=1,
b
=(1,1),且
a
b
,則向量
a
的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表是一位母親給兒子作的成長記錄:
年齡/周歲3456789
身高/cm94.8104.2108.7117.8124.3130.8139.1
根據(jù)以上樣本數(shù)據(jù),她建立了身高y(cm)與年齡x(周歲)的線性回歸方程為
?
y
=7.19x+73.93,給出下列結(jié)論:
①y與x具有正的線性相關(guān)關(guān)系;
②回歸直線過樣本的中心點(42,117.1);
③兒子10歲時的身高是145.83cm;
④兒子年齡增加1周歲,身高約增加7.19cm.
其中,正確結(jié)論的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊答案