某養(yǎng)殖戶有1萬只鴨,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.001,設(shè)發(fā)病的鴨的只數(shù)為ξ,則D(ξ)等于( 。
A、1B、9.99
C、10D、19.6
考點:離散型隨機(jī)變量的期望與方差
專題:概率與統(tǒng)計
分析:由題意知ξ~B(10000,0.001),由此能求出D(ξ).
解答: 解:由題意知ξ~B(10000,0.001),
∴D(ξ)=10000×0.001×(1-0.001)=9.99.
故選:B.
點評:本題考查離散型隨機(jī)變量的方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意二項分布的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知變量x,y滿足
x-2y+2≥0
2x-y-2≤0
y≥0
,則z=3x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,最小值是4的函數(shù)的序號是
 

①y=x+
4
x

②y=sinx+
4
sinx

③y=2ex+2e-x
④y=logx3+4log3x(0<x<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
i
1-i
的共軛復(fù)數(shù)是( 。
A、-
1
2
+
i
2
B、-
1
2
-
i
2
C、-
1
2
+
3
2
i
D、
1
2
+
i
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=lnx,若0<c<b<a<1,則
f(a)
a
f(b)
b
,
f(c)
c
的大小關(guān)系為( 。
A、
f(a)
a
f(b)
b
f(c)
c
B、
f(c)
c
f(b)
b
f(a)
a
C、
f(b)
b
f(a)
a
f(c)
c
D、
f(a)
a
f(c)
c
f(b)
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在復(fù)平面內(nèi)與復(fù)數(shù)z=
2i
1+i
所對應(yīng)的點關(guān)于虛軸對稱的點為A,則A對應(yīng)的復(fù)數(shù)為( 。
A、1+iB、1-i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x3-2ax+a在(0,1)內(nèi)有極小值,沒有極大值,則實數(shù)a的取值范圍是( 。
A、(0,3)
B、(-∞,3)
C、(0,+∞)
D、(0,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列關(guān)于回歸分析的說法中錯誤的是( 。
A、回歸直線一定過樣本中心(
.
x
,
.
y
B、殘差圖中殘差點比較均勻地落在水平的帶狀區(qū)域中,說明選用的模型比較合適
C、兩個模型中殘差平方和越小的模型擬合的效果越好
D、甲、乙兩個模型的R2分別約為0.98和0.80,則模型乙的擬合效果更好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長為1的正方體ABCD-A1B1C1D1中,P,Q是面對角線A1C1上的兩個不同動點.則以下結(jié)論不成立的是(  )
A、存在P,Q兩點,使BP⊥DQ
B、存在P,Q兩點,使BP,DQ與直線B1C都成45°的角
C、若|PQ|=1,則四面體BDPQ的體積一定是定值
D、若|PQ|=1,則四面體BDPQ在該正方體六個面上的正投影的面積的和為定值

查看答案和解析>>

同步練習(xí)冊答案