在△ABC中,角A、B、C的對邊分別為a、b、c,且滿足(2a-c)cosB=bcosC.
(Ⅰ)求角B的大。
(Ⅱ)若b=2,求△ABC的面積的最大值.

解:(Ⅰ)由題意,∵(2a-c)cosB=bcosC,由正弦定理得:(2sinA-sinC)cosB=sinBcosC,
∴2sinA•cosB-sinC•cosB=sinBcosC,化為:2sinA•cosB=sinC•cosB+sinBcosC,
∴2sinA•cosB=sin(B+C).
∵在△ABC中,sin(B+C)=sinA,
∴2sinA•cosB=sinA,解得:cosB=,故B=
(Ⅱ)若b=2,由余弦定理得:a2+c2-2ac•cos=4,即a2+c2-ac=4
又a2+c2-ac≥2ac-ac=ac,即ac≤4(取=時,a=c=),
故△ABC的面積S=ac•sinB≤×4×=,故△ABC的面積的最大值為
分析:(Ⅰ)利用正弦定理把題設(shè)等式中的邊換成角的正弦,進(jìn)而利用兩角和公式化簡整理求得cosB的值,從而求得B.
(Ⅱ)由余弦定理得可得a2+c2-ac=4,結(jié)合a2+c2-ac≥ac,可求得ac的最大值,代入△ABC的面積公式,可得答案.
點評:本題以三角形為載體,主要考查了正弦定理的運用,考查兩角和公式、誘導(dǎo)公式,以及基本不等式的應(yīng)用.考查了學(xué)生綜合分析問題和解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關(guān)系一定不成立的是( 。
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習(xí)冊答案