已知橢圓具有性質(zhì):若是橢圓:且為常數(shù)上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)是橢圓上的任意一點(diǎn),若直線(xiàn)和的斜率都存在,并分別記為,,那么與之積是與點(diǎn)位置無(wú)關(guān)的定值.
試對(duì)雙曲線(xiàn)且為常數(shù)寫(xiě)出類(lèi)似的性質(zhì),并加以證明.
雙曲線(xiàn)類(lèi)似的性質(zhì)為:若是雙曲線(xiàn)且為常數(shù)上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)是雙曲線(xiàn)上的任意一點(diǎn),若直線(xiàn)和的斜率都存在,并分別記為,,那么與之積是與點(diǎn)位置無(wú)關(guān)的定值.
【解析】
試題分析:雙曲線(xiàn)類(lèi)似的性質(zhì)為:若是雙曲線(xiàn)且為常數(shù)上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)是雙曲線(xiàn)上的任意一點(diǎn),若直線(xiàn)和的斜率都存在,并分別記為,,那么與之積是與點(diǎn)位置無(wú)關(guān)的定值.
證明:設(shè),,則,
且①,②,
兩式相減得:,
所以是與點(diǎn)位置無(wú)關(guān)的定值.
考點(diǎn):本題主要考查雙曲線(xiàn)的幾何性質(zhì),直線(xiàn)與雙曲線(xiàn)、橢圓的位置關(guān)系。
點(diǎn)評(píng):中檔題,曲線(xiàn)關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,得到一元二次方程,運(yùn)用韋達(dá)定理。本題主要運(yùn)用雙曲線(xiàn)的幾何性質(zhì)。(2)作為研究直線(xiàn)的斜率乘積是否為定值問(wèn)題,應(yīng)用韋達(dá)定理,通過(guò)“整體代換”,簡(jiǎn)化了探究過(guò)程。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
3 |
2 |
1 |
2 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
b2 |
a2 |
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com