函數(shù)y=f(x)是定義在R上的增函數(shù),函數(shù)y=f(x-2010)的圖象關(guān)于點(2010,0)對稱.若實數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,則x2+y2的取值范圍是( )
A.(0,16)
B.(0,36)
C.(16,36)
D.(0,+∞)
【答案】分析:本題考查的是函數(shù)的性質(zhì)及其綜合應(yīng)用,由已知條件我們可以判定函數(shù)y=f(x)是定義在R上的增函數(shù),而且是奇函數(shù),則不難求出滿足條件實數(shù)x,y滿足不等式f(x2-6x)+f(y2-8y+24)<0,對應(yīng)的平面區(qū)域,分析表達式x2+y2的幾何意義,找出滿足條件的點的坐標(biāo),即可求出答案.
解答:解:∵函數(shù)y=f(x-2010)的圖象關(guān)于點(2010,0)對稱
∴函數(shù)y=f(x)的圖象關(guān)于點(0,0)對稱
即函數(shù)y=f(x)為奇函數(shù),
則f(-x)=-f(x)
則不等式f(x2-6x)+f(y2-8y+24)<0可化為:
f(x2-6x)<-f(y2-8y+24)=f(-y2+8y-24)
又由函數(shù)y=f(x)是定義在R上的增函數(shù)
∴x2-6x<-y2+8y-24
即x2-6x+y2-8y+24<0
即(x-3)2+(y-4)2<1
則(x,y)點在以(3,4)為圓心,以1為半徑的圓內(nèi)
而x2+y2表示的是圓內(nèi)任一點到原點距離的平方
∴(5-1)2=16<x2+y2<(5+1)2=36
故選C
點評:函數(shù)的性質(zhì)與圓的方程都是高考必須要考的知識點,此題巧妙地將函數(shù)的性質(zhì)與圓的方程融合在一起進行考查,題目有一定的思維含量但計算量不大,所以題型設(shè)置為選擇題,該試題立足基礎(chǔ)考查了學(xué)生思維能力與運算能力以及靈活運用所學(xué)數(shù)學(xué)知識處理相關(guān)問題的能力,有一定的選拔作用同時對中學(xué)數(shù)學(xué)教學(xué)具有產(chǎn)生較好地導(dǎo)向作用.