如圖,直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,AE=EB,F(xiàn)為CE上的點,且BF⊥平面ACE.
(Ⅰ)求證AE⊥平面BCE;
(Ⅱ)求二面角B-AC-E的大;
(Ⅲ)求點D到平面ACE的距離.
【答案】分析:(Ⅰ)要證AE⊥平面BCE,只需證明AE垂直平面BCE內(nèi)的兩條相交直線BF、BC即可;
(Ⅱ)連接AC、BD交于G,連接FG,說明∠FGB為二面角B-AC-E的平面角,然后求二面角B-AC-E的大;
(Ⅲ)利用VD-ACE=VE-ACD,求點D到平面ACE的距離,也可以利用空間直角坐標(biāo)系,向量的數(shù)量積,證明垂直,求出向量的模.
解答:解:(I)∵BF⊥平面ACE,
∴BF⊥AE,
∵二面角D-AB-E為直二面角,
∴平面ABCD⊥平面ABE,又BC⊥AB,∴BC⊥平面ABE,∴BC⊥AE,
又BF?平面BCE,BF∩BC=B,∴AE⊥平面BCE.

(II)連接AC、BD交于G,連接FG,
∵ABCD為正方形,∴BD⊥AC,
∵BF⊥平面ACE,
∴FG⊥AC,∠FGB為二面角B-AC-E的平面角,由(I)可知,AE⊥平面BCE,∴AE⊥EB,
又AE=EB,AB=2,AE=BE=,
在直角三角形BCE中,CE==,BF===
在正方形中,BG=,在直角三角形BFG中,sin∠FGB===
∴二面角B-AC-E為arcsin

(III)由(II)可知,在正方形ABCD中,BG=DG,D到平面ACB的距離等于B到平面ACE的距離,BF⊥平面ACE,線段BF的長度就是點B到平面ACE的距離,即為D到平面ACE的距離所以D到平面的距離為=
另法:過點E作EO⊥AB交AB于點O.OE=1.
∵二面角D-AB-E為直二面角,∴EO⊥平面ABCD.
設(shè)D到平面ACE的距離為h,
∵VD-ACE=VE-ACD,∴•h=•EO.
∵AE⊥平面BCE,∴AE⊥EC.∴h===
∴點D到平面ACE的距離為

解法二:
(Ⅰ)同解法一.
(Ⅱ)以線段AB的中點為原點O,OE所在直線為x軸,AB所在直線為y軸,
過O點平行于AD的直線為z軸,建立空間直角坐標(biāo)系O-xyz,如圖.
∵AE⊥面BCE,BE?面BCE,∴AE⊥BE,
在Rt△AEB中,AB=2,O為AB的中點,
∴OE=1.∴A(0,-1,0),E(1,0,0),C(0,1,2),=(1,1,0),=(0,2,2)
設(shè)平面AEC的一個法向量為=(x,y,z),
,即,
解得,
令x=1,得=(1,-1,1)是平面AEC的一個法向量.
又平面BAC的一個法向量為=(1,0,0),
∴cos(,)===
∴二面角B-AC-E的大小為arccos
(III)∵AD∥z軸,AD=2,∴=(0,0,2),
∴點D到平面ACE的距離d=||•|cos<>===
點評:本題考查直線與平面垂直的判定,二面角的求法,考查空間想象能力,邏輯思維能力,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)直三棱柱A1B1C1-ABC的三視圖如圖所示,D、E分別為棱CC1和B1C1的中點.精英家教網(wǎng)
 (1)求點B到平面A1C1CA的距離;
(2)求二面角B-A1D-A的余弦值;
(3)在AC上是否存在一點F,使EF⊥平面A1BD,若存在確定其位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,五面體A-BCC1B1中,AB1=4.底面ABC 是正三角形,AB=2.四邊形BCC1B1是矩形,二面角A-BC-C1為直二面角.
(Ⅰ)若D是AC中點,求證:AB1∥平面BDC1
(Ⅱ)求該五面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱ABC-A1B1C1中,AB=AC=
1
2
AA1=a
,∠BAC=90°,D為棱d=
3
5
10
的中點.
(I)證明:A1D⊥平面ADC;
(II)求異面直線A1C與C1D所成角的大;
(III)求平面A1CD與平面ABC所成二面角的大。▋H考慮銳角情況).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:五面體A-BCC1B1中,AB1=4,△ABC 是正三角形,AB=2,四邊形  BCC1B1是矩形,二面角A-BC-C1為直二面角,D為AC的中點.
(1)求證:AB1∥平面BDC1;
(2)求二面角C-BC1-D的大;
(3)若A、B、C、C1為某一個球面上的四點,求該球的半徑r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直四棱柱A1B1C1D1-ABCD的高為3,底面是邊長為4,且∠DAB=60°的菱形,O是AC與BD的交點,O1是A1C1與B1D1的交點.
(I) 求二面角O1-BC-D的大;
(II) 求點A到平面O1BC的距離.

查看答案和解析>>

同步練習(xí)冊答案