【題目】已知函數(shù)在區(qū)間上有最大值和最小值.
(1)求的值;
(2)設,
證明:對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點;
(3)設,是否存在實數(shù)m和nm<n,使的定義域和值域分別為,如果存在,求出m和n的值.若不存在,請說明理由。
【答案】(1);(2)見解析;(3)
【解析】
(1)由題意得到函數(shù)在區(qū)間上單調(diào)遞增,結(jié)合題意可求得.(2)由得,構(gòu)造函數(shù),可證明函數(shù)單調(diào)遞增,故得結(jié)論成立.(3)分析條件可得函數(shù)在上單調(diào)遞增,于是可得到,于是得為方程的兩個不等實根,解方程可得.
(1)由題意得,
∴函數(shù)圖象的對稱軸為,
∴函數(shù)在區(qū)間上單調(diào)遞增,
由題得,
解得.
(2)證明:由(1)知,
∴,
令,
∴,
令.
設,則
∵,
∴,
∴,
∴,
∴,即,
∴函數(shù)為上的增函數(shù),
∴對任意實數(shù),函數(shù)的圖象與直線最多只有一個交點.
(3)由題意知,對稱軸為,
∴.
假設存在實數(shù),使得當時,的值域為,則,
∴,
∴函數(shù)在上單調(diào)遞增,
∴,
則為方程的兩個不等實根,
由得,
解得,.經(jīng)檢驗得滿足條件.
故存在,使得的定義域和值域分別為.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,設P1,P2,…,P6為單位圓上逆時針均勻分布的六個點.現(xiàn)任選其中三個不同點構(gòu)成一個三角形,記該三角形的面積為隨機變量S.
(1)求S=的概率;
(2)求S的分布列及數(shù)學期望E(S).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣lnx(a∈R)
(1)當a=1時,求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若x∈(0,1],|f(x)|≥1恒成立,求a的取值范圍;
(3)若a= ,證明:ex﹣1f(x)≥x.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高考復習經(jīng)過二輪“見多識廣”之后,為了研究考前“限時搶分”強化訓練次數(shù)與答題正確率﹪的關系,對某校高三某班學生進行了關注統(tǒng)計,得到如下數(shù)據(jù):
1 | 2 | 3 | 4 | |
20 | 30 | 50 | 60 |
(1)求關于的線性回歸方程,并預測答題正確率是100﹪的強化訓練次數(shù);
(2)若用表示統(tǒng)計數(shù)據(jù)的“強化均值”(精確到整數(shù)),若“強化均值”的標準差在區(qū)間內(nèi),則強化訓練有效,請問這個班的強化訓練是否有效?
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,=- ,
樣本數(shù)據(jù)的標準差為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sinxcosx﹣ x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)當x∈[0, ]時,求f(x)的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學準備在開學時舉行一次大學一年級學生座談會,擬邀請20名來自本校機械工程學院、海洋學院、醫(yī)學院、經(jīng)濟學院的學生參加,各學院邀請的學生數(shù)如下表所示:
學院 | 機械工程學院 | 海洋學院 | 醫(yī)學院 | 經(jīng)濟學院 |
人數(shù) | 4 | 6 | 4 | 6 |
(Ⅰ)從這20名學生中隨機選出3名學生發(fā)言,求這3名學生中任意兩個均不屬于同一學院的概率;
(Ⅱ)從這20名學生中隨機選出3名學生發(fā)言,設來自醫(yī)學院的學生數(shù)為ξ,求隨機變量ξ的概率分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設0<a<1,已知函數(shù)f(x)= ,若對任意b∈(0, ),函數(shù)g(x)=f(x)﹣b至少有兩個零點,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com