【題目】《高中數(shù)學(xué)課程標(biāo)準(zhǔn)》(2017 版)規(guī)定了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為分,分值高者為優(yōu)),則下面敘述正確的是( )

(注:雷達(dá)圖(Radar Chart),又可稱(chēng)為戴布拉圖、蜘蛛網(wǎng)圖(Spider Chart),可用于對(duì)研究對(duì)象的多維分析)

A.甲的數(shù)據(jù)分析素養(yǎng)高于乙

B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)

C.乙的六大素養(yǎng)中邏輯推理最差

D.乙的六大素養(yǎng)整體水平優(yōu)于甲

【答案】D

【解析】

根據(jù)雷達(dá)圖,依次判斷每個(gè)選項(xiàng)的正誤得到答案.

根據(jù)雷達(dá)圖得甲的數(shù)據(jù)分析素養(yǎng)低于乙,所以A錯(cuò)誤

根據(jù)雷達(dá)圖得甲的數(shù)學(xué)建模素養(yǎng)等于數(shù)學(xué)抽象素養(yǎng),所以B錯(cuò)誤

根據(jù)雷達(dá)圖得乙的六大素養(yǎng)中數(shù)學(xué)建模和數(shù)學(xué)抽象最差,所以C錯(cuò)誤

根據(jù)雷達(dá)圖得乙整體為27分,甲整體為22分,乙的六大素養(yǎng)整體水平優(yōu)于甲,所以D正確

故答案選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐,,在底面上的投影上.

1)證明

2為棱上一點(diǎn),若與面所成的角和與面所成的角相等,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中, , 分別為, 的中點(diǎn),的中點(diǎn),,.沿折起到的位置,使得平面平面,如圖2.

1)求證:;

2)求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知以下三視圖中有三個(gè)同時(shí)表示某一個(gè)三棱錐,則不是該三棱錐的三視圖是 ( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的實(shí)常數(shù),函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若函數(shù)有兩個(gè)不同的零點(diǎn),

(。┣髮(shí)數(shù)的取值范圍;

(ⅱ)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面的莖葉圖記錄了甲、乙兩代表隊(duì)各10名同學(xué)在一次英語(yǔ)聽(tīng)力比賽中的成績(jī)(單位:).已知甲代表隊(duì)數(shù)據(jù)的中位數(shù)為76,乙代表隊(duì)數(shù)據(jù)的平均數(shù)是75.

1)求,的值;

2)若分別從甲、乙兩隊(duì)隨機(jī)各抽取1名成績(jī)不低于80分的學(xué)生,求抽到的學(xué)生中,甲隊(duì)學(xué)生成績(jī)不低于乙隊(duì)學(xué)生成績(jī)的概率;

3)判斷甲、乙兩隊(duì)誰(shuí)的成績(jī)更穩(wěn)定,并說(shuō)明理由(方差較小者穩(wěn)定).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,曲線:,為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線.

(1)說(shuō)明是哪一種曲線,并將的方程化為極坐標(biāo)方程;

(2)若直線的方程為,設(shè)的交點(diǎn)為,的交點(diǎn)為,,若的面積為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程k在(0,+∞)上有兩個(gè)不同的解α,β(αβ),則下列的四個(gè)命題正確的是( )

A. sin 2α=2αcos2α B. cos 2α=2αsin2α

C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示七面體中,,平面,平面平面,四邊形是邊長(zhǎng)為2的菱形,,M,N分別為,的中點(diǎn).

1)求證:平面

2)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案