求下列函數(shù)的值域:
(1)y=
sin2xsinx
1-cosx
;
(2)y=sinx+cosx+sinxcosx;
(3)y=2cos(
π
3
+π)
+2cosx.
分析:(1)利用二倍角公式化簡y=
sin2xsinx
1-cosx
為y=2cos2x+2cosx,然后配方整理求出最值;
(2)令t=sinx+cosx,推出t2=1+2sinxcosx,化簡y=sinx+cosx+sinxcosx,為y=
1
2
(t+1)2-1
.根據(jù)t的范圍求出函數(shù)的最值;
(3)利用兩角和的余弦函數(shù)化簡y=2cos(
π
3
+π)
+2cosx,然后利用兩角和的余弦函數(shù)推出y=2
3
cos(x+
π
6
)
.然后求出最值.
解答:解:(1)y=
2sinxcosxsinx
1-cosx
=
2cosx(1-cos2x)
1-cosx
=2cos2x+2cosx=2(cos+
1
2
)2
-
1
2

于是當(dāng)且僅當(dāng)cosx=1時取得ymax=4,但cosx≠1,
∴y<4,且ymin=-
1
2
,當(dāng)且僅當(dāng)cosx=-
1
2
時取得.故函數(shù)值域?yàn)?span id="lhx5rnb" class="MathJye">[-
1
2
,4).
(2)令t=sinx+cosx,則有t2=1+2sinxcosx,即sinxcosx=
t2-1
2

有y=f(t)=t+
t2-1
2
=
1
2
(t+1)2-1
.又t=sinx+cosx=
2
sin(x+
π
4
)
,
∴-
2
≤t≤
2
.故y=f(t)=
1
2
(t+1)2-1
(-
2
≤t≤
2
),
從而知:f(-1)≤y≤f(
2
),即-1≤y≤
2
+
1
2
.即函數(shù)的值域?yàn)?span id="dv5rd1p" class="MathJye">[-1,
2
+
1
2
].
(3)y=2cos(
π
3
+x)
+2cosx=2cos
π
3
cosx-2sin
π
3
sinx+2cosx=3cosx-
3
sinx
=2
3
(
3
2
cosx-
1
2
sinx)
=2
3
cos(x+
π
6
)

|cos(x+
π
6
)|
≤1
∴該函數(shù)值域?yàn)閇-2
3
,2
3
].
點(diǎn)評:本題是基礎(chǔ)題,考查三角函數(shù)的最值的求法,二倍角公式、兩角和的正弦函數(shù)、余弦函數(shù)的應(yīng)用,換元法的應(yīng)用,(2)是難度較大題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)y=
3sinx+1
3sinx+2
;
(2)y=
1-tan2(
π
4
-x)
1+tan2(
π
4
-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)y=loga(-2sin2x+5sinx-2);
(2)y=sin(x-
π6
)cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
x2
x2+1
;                  
 (2)y=2x+
x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

例1.求下列函數(shù)的值域
(1)y=
1+sinx
2+cosx
(2)y=
ex-e-x
ex+e-x
(3)y=sinx+cosx+sinxcosx
(4)y=x+
1
x
(2≤x≤5)
(5)y=
x+1
x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(Ⅰ)y=(
1
2
)2x-x2

(Ⅱ)y=
3x-1
3x+1

查看答案和解析>>

同步練習(xí)冊答案