求下列函數(shù)的值域
(1)y=loga(-2sin2x+5sinx-2);
(2)y=sin(x-
π6
)cosx
分析:(1)中所給函數(shù)是由對(duì)數(shù)函數(shù)和一元二次構(gòu)成的復(fù)合函數(shù),其單調(diào)性遵循同增異減,欲求該對(duì)數(shù)函數(shù)的值域,需要采用換元法求出真數(shù)的p的范圍.
(2)中所給函數(shù)是兩個(gè)不同角的三角函數(shù)式乘積,可以用差角的正弦公式展開原式,再利用三角函數(shù)的誘導(dǎo)公式合并成同一名下的三角函數(shù),最后結(jié)合三角函數(shù)自身的有界性解決本題.
解答:解:(1)令sinx=t,則-1≤t≤1,則真數(shù) p=-2sin2x+5sinx-2=-2(t-
5
4
)
2
+
9
8
,p>0
∵-1≤t≤1,∴-
9
4
≤t-
5
4
≤-
1
4
∴-9≤-2(t-
5
4
)
2
+
9
8
≤1,-9≤p≤1
∴0<p≤1
即y=logap,(,-9≤p≤1)
故當(dāng)a>1時(shí),函數(shù)值域?yàn)椋?∞,0]
當(dāng)0<a<1時(shí),函數(shù)的值域?yàn)閇0,+∞).
(2)y=sin(x-
π
6
)cosx
=(sinxcos
π
6
-cosxsin
π
6
)•cosx
=
1
2
sin(2x-
π
6
)-
1
4

∵-1≤sin(2x-
π
6
) ≤1

∴函數(shù)值域?yàn)閇-
3
4
1
4
].
點(diǎn)評(píng):換元法或三角函數(shù)法求值域,最大的問題是范圍,要充分注意換元后的范圍以及三角函數(shù)的有界性.
另外,正(余)弦型函數(shù)y=Asin(wx+θ)+b,(y=Acos(wx+θ)+b)的特點(diǎn)如下:
一名(整個(gè)函數(shù)表達(dá)式只有一個(gè)三角函數(shù)名,能充分發(fā)揮三角函數(shù)性質(zhì)的應(yīng)用)
一角(整個(gè)函數(shù)表達(dá)式只有一個(gè)角,有利于結(jié)合三角函數(shù)的有界性)
一次(最高次冪是一次的,有利于結(jié)合繁雜的誘導(dǎo)公和三角函數(shù)性質(zhì))
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)y=1+sinx+cosx+
12
sin2x  x∈[-π,π];
(2)y=-cos3xcosx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
3x+8
x+2
;(2)y=3x-6
x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域
(1)f(x)=2x-3,x∈{x∈N|1≤x≤5};  (2)f(x)=
1
4x
-
1
2x
+1
,x∈[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

例1.求下列函數(shù)的值域
(1)y=
1+sinx
2+cosx
(2)y=
ex-e-x
ex+e-x
(3)y=sinx+cosx+sinxcosx
(4)y=x+
1
x
(2≤x≤5)
(5)y=
x+1
x+2

查看答案和解析>>

同步練習(xí)冊(cè)答案