【題目】在平面直角坐標(biāo)系中,曲線為(為參數(shù)).在以為原點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線與除極點(diǎn)外的一個(gè)交點(diǎn)為,設(shè)直線經(jīng)過(guò)點(diǎn),且傾斜角為,直線與曲線的兩個(gè)交點(diǎn)為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)求的值.
【答案】(1)的普通方程是,的直角坐標(biāo)方程是(2)
【解析】
(1)利用同角三角函數(shù)的基本關(guān)系式消去參數(shù),求得的參數(shù)方程,利用極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程的公式,將的的極坐標(biāo)方程,轉(zhuǎn)化為直角坐標(biāo)方程.
(2)聯(lián)立的方程和射線的方程,求得點(diǎn)坐標(biāo),進(jìn)而求得直線的參數(shù)方程,代入橢圓方程,寫出韋達(dá)定理,根據(jù)直線參數(shù)的幾何意義,求得的值.
(1)的普通方程是.
由得,所以的直角坐標(biāo)方程是
(2)射線即聯(lián)立與得或,不是極點(diǎn),.
依題意,直線的參數(shù)方程可以表示為 (為參數(shù)),
代入得,設(shè)點(diǎn)的參數(shù)是,則
,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,直線,若直線上存在點(diǎn),過(guò)點(diǎn)引圓的兩條切線,使得,則實(shí)數(shù)的取值范圍是( )
A. B. [,]
C. D. )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知斜率為1的直線與橢圓交于,兩點(diǎn),且線段的中點(diǎn)為,橢圓的上頂點(diǎn)為.
(1)求橢圓的離心率;
(2)設(shè)直線與橢圓交于兩點(diǎn),若直線與的斜率之和為2,證明:過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線 : ( )的焦點(diǎn)為 ,點(diǎn) 在拋物線 上,且 ,直線 與拋物線 交于 , 兩點(diǎn), 為坐標(biāo)原點(diǎn).
(1)求拋物線 的方程;
(2)求 的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四面體中,分別是線段的中點(diǎn),,,,直線與平面所成的角等于.
(Ⅰ)證明:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為,,下頂點(diǎn)為,為坐標(biāo)原點(diǎn),點(diǎn)到直線的距離為,為等腰直角三角形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線與橢圓交于,兩點(diǎn),若直線與直線的斜率之和為,證明:直線恒過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)若直線和函數(shù)的圖象相切,求的值;
(Ⅱ)當(dāng)時(shí),若存在正實(shí)數(shù),使對(duì)任意,都有恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線恒過(guò)定點(diǎn),過(guò)點(diǎn)引圓的兩條切線,設(shè)切點(diǎn)分別為,.
(1)求直線的一般式方程;
(2)求四邊形的外接圓的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓:有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com