如果log2x+log2y=1,則x+2y的最小值是______.
如果log2x+log2y=1,可得 log2 xy=1,x>0,y>0,且 xy=2.
則x+2y≥2
x•2y
=4,當且僅當x=2y 時,等號成立.
故答案為 4.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=log2
x+1x-1
+log2(x-1)+log2(p-x)
,
(1)求函數(shù)的定義域.
(2)問f(x)是否存在最大值與最小值?如果存在,請把它寫出來;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則a的取值范圍是
[0,1]
[0,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數(shù)f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(cx+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則c的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設Sn是數(shù)列{
1an
}的前n項和,記f(n)=S2n-Sn
(1)求an;
(2)比較f(n+1)與f(n)的大;
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對一切大于1的自然數(shù)n和所有使不等式有意義的實數(shù)x都成立,求實數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列{an}滿足:a1+a2n-1=2n,n∈N*,設Sn是數(shù)列{數(shù)學公式}的前n項和,記f(n)=S2n-Sn
(1)求an;
(2)比較f(n+1)與f(n)的大。
(3)(理)若不等式log2t+log2x+log2(2-x)-log2(12f(n))-3<0對一切大于1的自然數(shù)n和所有使不等式有意義的實數(shù)x都成立,求實數(shù)t的取值范圍.
(文)如果函數(shù)g(x)=x2-3x-3-12f(n)對于一切大于1的自然數(shù)n,其函數(shù)值都小于零,求x的取值范圍.

查看答案和解析>>

同步練習冊答案