設(shè)集合A={1,2,3},在集合A的所有非空子集中任取一個(gè)集合B.
(Ⅰ)記事件M為“集合B含有元素2”,求事件M發(fā)生的概率;
(Ⅱ)記事件N為“在集合B中任取一個(gè)元素a,都有4-a∈B”,求事件N發(fā)生的概率.
考點(diǎn):列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計(jì)
分析:一一列舉出所有的基本事件,再求出滿足條件的基本事件,根據(jù)概率公式計(jì)算即可
解答: 解:(Ⅰ)記事件Ω為“從集合A的所有非空子集中任取一個(gè)集合”,則事件Ω包含的基本事件為:
{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}共7個(gè)基本事件,
事件M中包含的基本事件為{2},{1,2},{2,3},{1,2,3}共4個(gè)基本事件,
所以P(M)=
4
7
;
(Ⅱ)事件M中包含的基本事件為{2},{1,3}共2個(gè)基本事件,
所以P(N)=
2
7
點(diǎn)評:本題考查元素與集合關(guān)系的判斷,考查概率的求法,求得滿足條件的種數(shù)是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若向量
a
=(2,1),
b
=(
3
2
2
,-
2
2
),則
a
b
的夾角大小為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(x-2)+yi(x,y∈R),若|z|≤
3
,求
y
x
的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x-2),且f(x)在[-5,-4]上是減函數(shù),又α、β是銳角三角形的兩個(gè)內(nèi)角,則( 。
A、f(cosα)<f(cosβ)
B、f(sinβ)>f(cosα)
C、f(sinα)<f(cosβ)
D、f(sinα)<f(sinβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=1+sin(x-
π
2
)的圖象( 。
A、關(guān)于x軸對稱
B、關(guān)于y軸對稱
C、關(guān)于原點(diǎn)對稱
D、關(guān)于直線x=
π
2
對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角AOB的邊OA上有異于頂點(diǎn)O的6個(gè)點(diǎn),邊OB上有異于頂點(diǎn)O的4個(gè)點(diǎn),加上點(diǎn)O,以這11個(gè)點(diǎn)為頂點(diǎn)共可以組成
 
個(gè)三角形(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:ax+3y+1=0.
(1)若直線l在兩坐標(biāo)軸上的截距相等,求a的值;
(2)若直線l與直線x+(a-2)y+a=0平行,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
y≤x
x+y≤1
y≥-1
,則z=
2y
4x
的最大值為( 。
A、
1
32
B、
2
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的角A,B,C的對邊分別為a,b,c,已知cos(A-B)+cosC=1,a=2b,求B.

查看答案和解析>>

同步練習(xí)冊答案