【題目】2019年11月26日,聯(lián)合國教科文組織宣布3月14日為“國際數(shù)學日”(昵稱:),2020年3月14日是第一個“國際數(shù)學日”.圓周率是圓的周長與直徑的比值,是一個在數(shù)學及物理學中普遍存在的數(shù)學常數(shù).有許多奇妙性質,如萊布尼茲恒等式,即為正奇數(shù)倒數(shù)正負交錯相加等.小紅設計了如圖所示的程序框圖,要求輸出的值與非常近似,則①、②中分別填入的可以是( )
A.,B.,
C.,D.,
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上一動點A的坐標為.
(1)求點A的軌跡E的方程;
(2)點B在軌跡E上,且縱坐標為.
(i)證明直線AB過定點,并求出定點坐標;
(ii)分別以A,B為圓心作與直線相切的圓,兩圓公共弦的中點為H,在平面內是否存在定點P,使得為定值?若存在,求出點P坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
在四棱錐中,側面底面,,為中點,底面是直角梯形,,=90°,,.
(I)求證:平面;
(II)求證:平面;
(III)設為側棱上一點,,試確定的值,使得二面角為45°.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)在處的切線方程;
(2)設
①當時,求函數(shù)的單調區(qū)間;
②當時,求函數(shù)的極大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓與拋物線有共同的焦點,且兩曲線的公共點到的距離是它到直線 (點在此直線右側)的距離的一半.
(1)求橢圓的方程;
(2)設為坐標原點,直線過點且與橢圓交于兩點,以為鄰邊作平行四邊形.是否存在直線,使點落在橢圓或拋物線上?若存在,求出點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】骰子,古代中國民間娛樂用來投擲的博具,早在戰(zhàn)國時期就有.最常見的骰子是正六面體,也有正十四面體、球形十八面體等形制的骰子,如圖是滿城漢墓出土的銅煢,它是一個球形十八面體骰子,有十六面刻著一至十六數(shù)字,另兩面刻“驕”和“酒來”,其中“驕”表示最大數(shù)十七,“酒來”表示最小數(shù)零,每投一次,出現(xiàn)任何一個數(shù)字都是等可能的.現(xiàn)投擲銅煢三次觀察向上的點數(shù),則這三個數(shù)能構成公比不為1的等比數(shù)列的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標準果,優(yōu)質果,精品果,禮品果.某采購商從采購的一批水果中隨機抽取100個,利用水果的等級分類標準得到的數(shù)據如下:
等級 | 標準果 | 優(yōu)質果 | 精品果 | 禮品果 |
個數(shù) | 10 | 30 | 40 | 20 |
(1)用樣本估計總體,果園老板提出兩種購銷方案給采購商參考:
方案1:不分類賣出,單價為20元/.
方案2:分類賣出,分類后的水果售價如下表:
等級 | 標準果 | 優(yōu)質果 | 精品果 | 禮品果 |
售價(元/) | 16 | 18 | 22 | 24 |
從采購商的角度考慮,應該采用哪種方案較好?并說明理由.
(2)從這100個水果中用分層抽樣的方法抽取10個,再從抽取的10個水果中隨機抽取3個,表示抽取到精品果的數(shù)量,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經》是我國古老的天文學和數(shù)學著作,其書中記載:一年有二十四個節(jié)氣,每個節(jié)氣晷長損益相同(晷是按照日影測定時刻的儀器,晷長即為所測影子的長度),夏至、小暑、大暑、立秋、處暑、白露、秋分、寒露、霜降是連續(xù)的九個節(jié)氣,其晷長依次成等差數(shù)列,經記錄測算,這九個節(jié)氣的所有晷長之和為49.5尺,夏至、大暑、處暑三個節(jié)氣晷長之和為10.5尺,則立秋的晷長為( )
A.1.5尺B.2.5尺C.3.5尺D.4.5尺
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com