解答:
解:函數(shù)f(x)的定義域為(0,+∞),f′(x)=ax-
=
,
(Ⅰ)當(dāng)a<0時,f′(x)<0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)a=0時,f′(x)=
-<0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞減;
當(dāng)a>0時,令f′(x)=0,結(jié)合x>0,解得
x=,當(dāng)x∈(0,
)時,f′(x)<0,所以函數(shù)f(x)在(0,
)上單調(diào)遞減;當(dāng)x∈(
,+∞)時,f′(x)>0,所以函數(shù)f(x)在(
,+∞)上單調(diào)遞增;
綜上所述:當(dāng)a≤0時,f′(x)<0,故函數(shù)f(x)在(0,+∞)上單調(diào)遞減;當(dāng)a>0時,函數(shù)f(x)在(0,
)上單調(diào)遞減,在(
,+∞)上單調(diào)遞增.
(Ⅱ)因為對任意m∈[1,e],直線PM的傾斜角都是鈍角,所以對任意m∈[1,e],直線PM的斜率小于0,
即
<0,所以f(m)<1,即f(x)在區(qū)間[1,e]上的最大值小于1.
又因為f′(x)=ax-
=
,令g(x)=ax
2-2,x∈[1,e]
(1)當(dāng)a≤0時,由(Ⅰ)知f(x)在區(qū)間[1,e]上單調(diào)遞減,所以f(x)的最大值為f(1)=
a<1,所以a<2,
故a≤0符和題意;
(2)當(dāng)a>0時,令f′(x)=0,得
x=,
①當(dāng)
≤1,即a≥2時,f(x)在區(qū)間[1,e]上單調(diào)遞增,所以函數(shù)f(x)的最大值f(e)=
ae2-2<1,解得a<
,故無解;
②當(dāng)
≥e,即
a≤時,f(x)在區(qū)間[1,e]上單調(diào)遞減,函數(shù)f(x)的最大值為f(1)=
a<1,解得a<2,故0
<a<;
③當(dāng)
1<<e,即
<a<2時,函數(shù)f(x)在(1,
)上單調(diào)遞減;當(dāng)x∈(
,e)上單調(diào)遞增,故f(x)在區(qū)間x∈[1,e]上的最大值只能是f(1)或f(e),
所以
,即
,故
<a<.
綜上所述a的取值范圍
a<.