【題目】如圖,游客從某旅游景區(qū)的景點A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50m/min.在甲出發(fā)2min后,乙從A乘纜車到B,在B處停留1min后,再從B勻速步行到C.假設纜車勻速直線運動的速度為130m/min,山路AC長為1260m,經(jīng)測量,cosA= ,cosC=
(1)求索道AB的長;
(2)問乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在什么范圍內(nèi)?
【答案】
(1)解:在△ABC中,因為cosA= ,cosC= ,所以sinA= ,sinC= ,
從而sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC= =
由正弦定理 ,得AB= = =1040m.
所以索道AB的長為1040m.
(2)解:假設乙出發(fā)t分鐘后,甲、乙兩游客距離為d,此時,甲行走了(100+50t)m,乙距離A處130t m,所以由余弦定理得
d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)× =200(37t2﹣70t+50)=200[37(t﹣ )2+ ],
因0≤t≤ ,即0≤t≤8,故當t= min時,甲、乙兩游客距離最短.
(3)解:由正弦定理 ,得BC= = =500m,
乙從B出發(fā)時,甲已經(jīng)走了50×(2+8+1)=550m,還需走710m才能到達C.
設乙步行的速度為 v m/min,由題意得﹣3≤ ≤3,解得 ,所以為使兩位游客在C處互相等待的時間不超過3分鐘,乙步行的速度應控制在[ ]范圍內(nèi).
【解析】(1)根據(jù)正弦定理即可確定出AB的長;(2)設乙出發(fā)t分鐘后,甲、乙兩游客距離為d,此時,甲行走了(100+50t)m,乙距離A處130t m,由余弦定理可得;(3)設乙步行的速度為 v m/min,從而求出v的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】一個工廠在某年連續(xù)10個月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關系,請用相關系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關于x的回歸方程,估計某月產(chǎn)量為1.98萬件時,此時產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關系數(shù),
回歸方程中斜率和截距的最小二乘估計公式分別為:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,過A作AF⊥SB,垂足為F,點E,G分別是棱SA,SC的中點.求證:
(1)平面EFG∥平面ABC;
(2)BC⊥SA.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記為虛數(shù)集,設,則下列類比所得的結(jié)論正確的是__________.
①由,類比得
②由,類比得
③由,類比得
④由,類比得
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在直角梯形中,,分別是上的點,,且(如圖①).將四邊形沿折起,連接(如圖②).在折起的過程中,下列說法中錯誤的個數(shù)是( )
①平面;
②四點不可能共面;
③若,則平面平面;
④平面與平面可能垂直.
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩人做定點投籃游戲,已知甲每次投籃命中的概率均為,乙每次投籃命中的概率均為,甲投籃3次均未命中的概率為,甲、乙每次投籃是否命中相互之間沒有影響.
(1)若甲投籃3次,求至少命中2次的概率;
(2)若甲、乙各投籃2次,設兩人命中的總次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com