已知|
|=1,|
|=2且(
+
)與
垂直,則
與
的夾角是( 。
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:由題意可得 (
+
)•
=
2+
•=0,求得cos<
,
>的值,可得<
,
>的值.
解答:
解:由題意可得 (
+
)•
=
2+
•=1+1×2×cos<
,
>=0,
求得cos<
,
>=-
,∴<
,
>=120°,
故選:D.
點評:本題主要考查兩個向量垂直的性質(zhì),兩個向量的數(shù)量積的定義,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
把命題“?x
0∈R,x
02-2x
0+1<0”的否定寫在橫線上
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
n個連續(xù)自然數(shù)按規(guī)律排成下表,根據(jù)規(guī)律,從2012到2014的箭頭方向依次為
.
①↓→;②→↑;③↑→;④→↓
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
長方體ABCD-A
1B
1C
1D
1,AB=2,AD=2,
AA1=,則點D到平面ACD
1的距離是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=cos
,根據(jù)下列框圖,輸出S的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)m、n是兩條不同的直線,α,β,γ是三個不同的平面,給出下列四個命題:
①若m⊥α,n∥α,則m⊥n
②若α∥β,β∥γ,m⊥α,則m⊥γ
③若m∥α,m∥β,α∩β=n,則m∥n
④若α⊥γ,β⊥γ,α∩β=m,則m⊥γ.正確命題的個數(shù)是( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
定義在R上的偶函數(shù)f(x)滿足f(x+1)f(x)=-2(f(x)≠0),且在區(qū)間(2013,2014)上單調(diào)遞增,已知α,β是銳角三角形的兩個內(nèi)角,則f(sinα)、f(cosβ)的大小關(guān)系是( 。
A、f(sinα)<f(cosβ) |
B、f(sinα)>f(cosβ) |
C、f(sinα)=f(cosβ) |
D、以上情況均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖示,在底面為直角梯形的四棱椎P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=4,AD=2,AB=2
,BC=6.
(1)求證:BD⊥平面PAC;
(2)求二面角A-PC-D的正切值;
(3)求點D到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
一個袋中裝有形狀大小完全相同的球9個,其中紅球3個,白球6個,每次隨機取1個,直到取出3次紅球即停止.
(Ⅰ)從袋中不放回地取球,求恰好取4次停止的概率P1;
(Ⅱ)從袋中有放回地取球.
①求恰好取5次停止的概率P2;
②記5次之內(nèi)(含5次)取到紅球的個數(shù)為ξ,求隨機變量ξ的分布列及數(shù)學(xué)期望.
查看答案和解析>>