若點(diǎn)P在直線l1:x+y+3=0上,過點(diǎn)P的直線l2與曲線C:(x-5)2+y2=16相切于點(diǎn)M,則|PM|的最小值為( 。
A、
2
B、2
C、2
2
D、4
分析:要使PM|最小,必須點(diǎn)P到圓心(5,0)的距離最。c(diǎn)P到圓心(5,0)的距離最小值等于圓心到
直線l1:x+y+3=0 的距離:d,|PM|的最小值為  
d2-r2
解答:解:由題意得,要使PM|最小,必須點(diǎn)P到圓心(5,0)的距離最。O(shè)點(diǎn)P(m,-m-3),
點(diǎn)P到圓心(5,0)的距離最小值等于圓心到直線l1:x+y+3=0 的距離:d=
|5+0+3|
2
=4
2
,
∴|PM|的最小值為  
d2-r2
=
32-16
=4,
故選 D.
點(diǎn)評(píng):本題考查點(diǎn)到直線的距離公式的應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若點(diǎn)P在直線l1:x+y+3=0上,過點(diǎn)P的直線l2與曲線C:(x-5)2+y2=16只有一個(gè)公共點(diǎn)M,則|PM|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣西一模)若點(diǎn)P在直線l1:x+my+3=0上,過點(diǎn)P的直線l2與圓C:(x-5)2+y2=16只有一個(gè)公共點(diǎn)M,且|PM|的最小值為4,則m=
±1
±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年廣西桂林市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

若點(diǎn)P在直線l1:x+my+3=0上,過點(diǎn)P的直線l2與圓C:(x-5)2+y2=16只有一個(gè)公共點(diǎn)M,且|PM|的最小值為4,則m=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)二輪綜合測(cè)試卷3(文科)(解析版) 題型:選擇題

若點(diǎn)P在直線l1:x+y+3=0上,過點(diǎn)P的直線l2與曲線C:(x-5)2+y2=16相切于點(diǎn)M,則|PM|的最小值為( )
A.
B.2
C.
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案